
PIXEL-PLANES:
BUILDING A VLSI-BASED RASTER

GRAPIDCS SYSTEM

Technical Report 85-001; Revised March 14, 1985

John Poulton, Henry Fuchs,
John D. Austin, John G. Eyles, Justin Heinecke,

Cheng-Hong Hsieh, Jack Goldfeather*,
Jeff P. Hultquist, Susan Spacb

The University of North Carolina at Chapel ·Hill
Department of Computer Science
New West Hall 035 A
Chapel Hill, N.C. 27514

*Department of Mathematics, Carleton Colle~, NorthBeld, AIN, on sabbatical at
Deparlment of Mathematics at University of North Carolina at Chapel Hill

PIXEL-PLANES:
Building a VLSI-Based Graphics System•

1. Introduction

J ohn Poulton , Henry Fuchs, John D. Austin, John G. Eylcs
Justin Heinecke, Cbcng-Hong Hsicb

Jack Goldfeatbcr•• , Jeff P. Hultquist , Susan Spacb

Department of Computer Science
University of North Carolina at Chapel Hill

Chapel Hill , NC 27514

Pixel-planes is a· VLSI-based raster graphics machine that will support real-time interaction
with three-dimensional shadowed, shaded, and colored images. The system 's cost and complexity
will be comparable to present-day line drawing systems, making it suitable for use with high
performance workstations. Potential applications include computer-aided design , medical display
and imaging, molecular modeling , and simulators for Bight and navigational training.

The ftwdanwntal ideal\ in this dt'sign have been previously publil\ht'd [F\tchs and Poulton, 1081;
F\tchs et al., 1082]. This paper reports recent progress toward building a full-scale working
Pixel-planes system, development of a number of new graphics algorithms for the machine, and
rcfint'ments in system architecture and design methods.

Much of current research in experimental graphics systems is aimed at improving the speed of
image generation by dividing the display into small regions , each of which is handled by separate
concurrent processors [Clark and Hannah, 1980; Gupta et al., 1081 ; Demetrescu, 1085]. In
Pixel-planes, this division is imbedded in a binary tree that performs the bulk of the system 's
computations and distributes the results to all pixels. Each pixel consists of an array of memory
elements and a small processor that only performs operations local to the pixel. The heart of
the system is a Smart Frame Buffer consisting of an array of identical custom chips that contain
the binary tree , pixel memories and processors, and video scan-refresh circuitry. These enhanced
memory chips employ a moderately dense, conventional dynamic RAM that takes up about 2/3 of
the chip's silicon area; the processing circuitry takes up the remaining 1/3.

The fundanwntal operation of the Pix<"l-planes system is calculating linear expressions of the
form Ax + Dy + C where x andy are the coordinates of a pixel and A, D, and Care data inputs to
the system. These expressions are calculated bit-serially in a binary tree multiplier /accumulator,
simultaneously for all pixels. The system's hardware is not built to execute a specific set of
graphics algorithms. Instead, many different algorithms can be recast into forms that evaluate
linear expressions and/or require only pixel-local operations . We are continually surprised at the
variety of algorithms that we and others are able to express in this form, and it is clear that the
architecture is much more powerful and more general than we had first imagined.

• To appear in the P roceedinss of the 1985 Chapel Hill Conference on VLSI, May 15- 17, 1985. This research
supported in part by the Defense Advance Research Projed Asency Contract. number DAAG29-83-K-0148 (monitored
by U.S. Army Rt>St-arch Office, Research Triansle Park, NC) and the National Science Foundation Grant number
E CS-8300970.

• • Department. of Mathematics, Carleton Colles e, Northfield, MN , on sabbatical at. Depa.rtment of Mathematics at
University of North Carolina at Chapel Hill.

.,

' •

ol

PIXEL-PLANES 2

Pixel - Planes Graphic lnglne

Figure 1: Ptxel-Planea Graphlca Engine replaeea the ruterlser, frame buffer, and video
eontroller In a conventional graphlea ayatem.

Z. Pixel-Planes Graphics System

Z.l System Overview

Figure 1 shows the relationship between the Pixel-planes graphics system hardware and a
conventional color graphics system .

The 'front end' of the convent ional graphics system is a pipeline of special processors that
manipulates an image database. The database contains (typically) a list of polygons that tile
the surfaces of the objects in a scene. Each polygon is described as a list of vertex coordinates
(x ,y , z in 'world' coordinates) and colors (values of Red , Green, Blue that specify the intrinsic color
of the vertex). A transformation engine operates on the coordinates of the vertex list for each
polygon, transforming the polygon to 'eye' coordinates in response to user input from joystick ,
trackball , or some similar device. Next, polygons (or portions of polygons) that are outside t he
viewing pyramid are clipped and perspective division is performed to transform 'eye' coordinates
to 'screen ' coordinates. Finally, a lighting model calculator modifies each vertex 's intrinsic color
according to the position and intensity of light sources. The output of the front-end pipeline is still
a list of polygon vertices , but wi th ver tex coordinates and colors transformed to the proper value
for display.

In advanced color gr aphics systems , the rasteriz.er performs a series of steps needed to translate
a list of polygon vertices into a smooth-shaded , rendered , digital image, with hidden surfaces
properly removed , and perhaps anti-aliased to reduce pixelization artifact s. In general, these
calculat ions must be performed for every pixel for every polygon processed, implying massive
amounts of computation and very large memory bandwidth.

The Pixel-planes Graphics Engine replaces the rasterizer , frame buffer, and video controller of
a conventional system. Its main component is a Smart Frame Buffer composed of custom VLSI
enhanced memory chips. It addresses the computational problem with a highly parallel processor
that mimics a processor per pixel. The memory bandwidth bottleneck is overcome by intimately

connecting processing circuitry and memory.

z.z Pixel-Planes Graphics Engine

The components of the Engine are:

PIXEL-PLANES 3

Th«> Translator , a spec ial purpose micro-programmable floating-point computer , converts the
scent' d<·script ion from a polygon vertex list into the form of coefficients A, D, C of the linear
expression F (x , y) = Ax + By + C. It also produces an encoded instruction for each step in
processing polygons or other primit ives (e.g., edge, z-compare, circle, paint-Red) . Translation will
involve , for example, describing an edge of a polygon in the form F (x ,y) = 0, or specifying the
polygon's planar surface in the form z = F(x, y) . In the system now under construction , the
Translator is a 5 MFlop micro-programmable engine based on the Weitek 1032/1033 floating-point
chip set.

The Image Generation Cont roller (IGC) converts the word-parallel, floating-point A, B, C
coeffici«>nts from the Translator to bit-serial , 2's complement data, decodes each instruction into
a st ream of control words, and outputs this data and control along wi th the clock for the Smart
Frame Buffer. Currently, the IGC is implemented as a custom chip that serializes the coefficient
data and a micro-programmable cont rol sequencer built using standard TTL parts.

The Smart Frame Buffer is organized as a series of ' logical boards', each with an array of
enhanced memory chips, as shown in Figure 2. This organization reduces the bandwidth (pin
count , operat ing speed) necessary at the memory chip 's video-data output port . Each logical
board con tains a 32-bit-wide register for video dat a, and successive logical boards are daisy-chained
together to form a high-speed shift-train. Every L cycles (where Lis the number of logical boards),
shifting i ~ d isahkd and the shift-train is loaded from a parallel set of registers on each board . While
shifting is enabled , these parallel registers are loaded , one byte at a time, from selected memory
chips.

Data, cont rol, and clocks both for image generat ion and video output are broadcast to the
enhanc(•d memory chips. No data or control need be returned from the memories to the IGC or
Video Cont roller , so the busses can easily be pipelined for high-speed operation.

In addition to these two uni-directional busses, a single serial scan-path links all memory
chips in the frame buffer. During system operat ion, the scan-path takes the place of chip-address
decoding, carrying a series of scan tokens that determine which set of memory chips is enabled
for video output (only one chip on each logical board is enabled at one time). During system
initialization, the scan-path is used to load various configuration registers, as discussed in Section
2.3.

The Video Controller is similar to those in convent ional systems, with the except ion of the
token-passing method of addressing. The current version is capable of support ing a variety of
display types (30 and 60 Hz, interl aced and non-interlaced , NTSC and non-standard) and any
number of enhanced memory chips.

Z.S Enhanced Memory Chips

Figure 3 is a block diagram of the enhanced memory chip. It contains the Mult ip lier that
implements the binary-tree linear-exp ression evaluator, an array of pixel ALU's, and a Memory
system that stores dat a for each pixel and provides a video scan-out mechanism .

A conceptual model of a binary-tree mult iplier / accumulator is shown in Figure 4. This
structure is recognizable as a variat io~ on the simple serial-parallel multiplier [Lyon , 1976J, where
both possible values of partial p roduct are generated at each stage. If such a tree has N levels, and
A contains K significant bits , A must be preceded by (N - 1) O's; 2N distinct values of Ax + C
will be generated (0 < = x < 2N), each value being N + K + 1 bits long.

To generate the linear expression Ax + By + C , two binary-tree multiplier/ accumulators are
stacked one atop the other. For a system with 1024 x 1024 pixels, a 20-level t ree is required. The

'•

•

PIXEL-PLANES 4

.,
•••trKtleu,

elect fr•• u;c

zs

Figure 2: Pixel-Plane• Smart Frame Buffer organisation.

top 10 levels of the tree calculate the 1024 values of Ax + C. The bottom 10 levels can be thought
of as 1024 subtrees, each of which rece ives one value of Ax + C as its root input, gets B as its side
input, and .fcneratcs 1024 values of Ax + By + C. For a system with N x N pixels , the binary tree
requires N - 1 multiply /accumulate stages. It performs the same function , at the same speed, as
a full 2N-stagc multiplier at every pixel (requiring 2N2JogN stages).

Only a small fraction of the pixels in a display can be put on a single chip , so it is necessary to
break the binary t ree into multiple chips. This is done by implementing a small sub-tree on each
chip that covers only the pixels on t he chip. A 'supertree' on each chip implements the tree levels
above the sub-tree . It contains one multiply/ accumulate stage for each level above t he sub-tree.
As shown in Figure 5, registers in the supertree are loaded at system initialization to map a path
through the full t ree to the local subtree. This defines the position of the chip's 64-pixel column in
the full image.

It. is possible, of course, to design a system without supertrees. If each chip were equipped
with one extra t ree node whose outputs go off-chip, the tree levels above each local subtree could
be completed using inter-chip wiring. This external wiring would , however, reduce system speed

•

~ ~

'

C A

fre• , ,. Ceetrelltr

I

Sen P1t11
Ce111trel

1'1e_,,
: (64 rtYI X 72 cell) . . .

Vlltt
Dete

Plxei ,W•r•
IW<IIreu

h/Fre• VI*• Cutrellu

PIXEL-PLANES 5

Figure 3: Block diagram of the Pixel-Planes memory chip.

nn • • .N •
nn
.. .
~t

M Tree

~h4e

Figure 4: Conceptual model of binary-tree linear expre••lon evaluator.

and complicate board-level construction. The configurable supertree on our current chips has 14
levt-ls, requiring only another 14 multiply/ accumulate stages and 14 registers- a relatively modest
penalty in silicon area. It also makes possible a module-redundancy scheme, described below, that
supports fault tolerance in our system.

Figure 6 shows the block diagram of the ALU at each pixel. Logical operations in the ALU
are performed by a one-bit adder with a multiplexer/complemcntcr on each of its three inputs. All
ALU's in the system receive function-select and register-load controls broadcast from the IGC, so
the ensemble of memory chips has SIMD concurrency. The ALU contains an EnabJe register that
controls memory write access, allowing each pixel to determine local~y whether current memory
contents can be overwritten.

nn n • • •
-.1-.1 -.1
NN N
•• • • • •
:i~ ~

•• •

PIXEL-PLANES 6

., .. d ...

et eecll lenl :

Rtellt - 1 l
l eft - 0
Rtellt - I
llellt - I
left - 0
llellt - I
left - 0
left - 0
Rtellt - I
ltellt - I

left - 0
left - 0
Rtellt - I
left - 0

n
!t
•
M

i ..
)

Figure 5 : Supertree mape a path through run tree on each ehlp.

f•ftcttea Carr, E••"•
Select lee4 lee4

~~----------~y,----------~'
fr•• IGC

Figure 6: Block diagram or the pixel ALU.

The Memory system consists of a relatively dense dynamic RAM array. Each column of cells in
the array contains corresponding bits in each pixel on the chip. Each row contains all of the bits in

1

PIXEL-PLANES 7

a pixel and is equipped with read/write circuitry ; thus the 'word width ' is extremely wide relative
to a conventional memory. The memory also must provide a means for the Video Controller to
access memory bits containing color-intensity informat ion .

3 . System Reali•ations
This section describes our experiences building several Pixel-pl<Wes display systems. Our first

enhanced memory chip was intended as a first VLSI design exercise and not intended to become
par t of a working display. Two small prototyp e displays have been built with second- and third
generation enhanced memory chips {Pxp/2 and Pxp/3) , and they were sufficient to p rove the basic
concepts in the design. We believe, however, that it is extremely important to build a system large
enough to support ' real ' applications; only in this way will we convincingly demonstrate the utility
of t his approach to build ing high-performance graphics machines. We are therefore construct ing a
much more ambit ious system using fourth-generation chips (Pxpl4) t hat will grow to a fu ll-scale,
full-speed working display within the next year.

3.1 PxplZ
Our second 111emory chip design [Fuchs et al., 1982] included the local subtree for 64 pixels, a

memory array with 16 bits/pixel and a single read/write port , and a simplified ALU with only a
Carry generator. It lacked circuit ry for t he remainder of t he t ree, and could therefore only be used
to build a 'toy' system.

A chip t ester was built using a microcomputer with a parallel 1/ 0 port , the 10 chips received
from fabricat.ion were t ested , and four were found to be mostly functional. The tester then became
the host for a small prototype display, with Translator and Image Generation Controller functions
carried out by software running on the microcomputer . The Pxpl2 prototype verified the hasic
concepts in t he design, execut ing (very slowly!) a basic set of polygon-oriented operations (polygon
area definition , hidden-surface calculations using a depth-buffer, Gouraud-like smooth shading).

This exercise immediately suggested a number of OPl'lign improvements:

(1) Since the memory had only a single port , image-generation had to b e halted to refresh t he
d isplay. This required a complex cont rol mechanism with an external scan-line buffer to allow
both image generation and video data scan-out to access pixel memory. It was clearly essential
to 8eparate these functions and to allow them to be asynchronous.

(2) Working through the details of generating separate root inputs for the sub-trees on each chip
led to constructive thinking about supert rees.

{3) Several interesting algorithms had been proposed for Pixel-planes that would require both a
more complex ALU and more memory b its/pixel.

Neither chip t est ing nor system operation would have been easy (or perhaps possible) if we had
not fi r8t written a functional simulator for the ch ip. This simulator modeled all of the circuitry in
the chip at the gate level, was event driven, but did not model circuit delays. It es,sentially captured
the ftmctional specification for the chip in an executable form. This simulator was written in a
standard p rogramming language (Pascal), a pract ice that we have maintained through the current
version of the design (current simulators are written in C).

3.2 Pxp13

Based on our experience with the fi rst prototype, the next chip (Figure 7) contained many
architectural improvements:

(1) A complete t ree was included on each chip , implemented with the supertree notion described
above.

{2) The ALU was mod ified to t he form shown in Figure 6 to support a variety of new algorithms.

(3) Memory size was increased to 32 bits/pixel. We used a dual-ported memory cell to allow
separate, asynchronous access to the pixel memory for scan refresh.

•

T

PIXEL-PLANES 8

Figure 7: Photo of PxplS memory chip ahowlng maJor function blocks.

(4) Since memory access on the video-data port always proceeds in scan-line order , we installed
a pixel-addressing mechanism that uses serial-shift tokens. A 'global' token that passes from
chip to chip performs chip select, while a ' local ' token register inside each chip manipulates the
pointer to the currently selected pixel. The token-addressing scheme reduces chip pin-count

. significantly, and is a faster mechanism than conventional address decoders.

(5) Since a serial shift-path was already needed to support the global token mechanism, we elected
to make multiple use of this path. During system initialization, this inter-chip path can be
diverted on each chip into the 'configuration ' register that programs the supertree, thus linking
all configuration registers into one large scan-path.

(6) Reasonable yield from fabrication at 4 micron feature size allows only 64 pixel& on a chip (1.5
micron feature size would allow a few hundred pixels per chip). Current fabrication limits
led us to investigate other ways of getting more memory on a single packaged device. We
saw that in future chip implementations, the 64-pixel chip might become merely one of a
number of modules on a much larger chip, where some modules are allowed to be faulty. An
Alive register was installed on the chip to provide a way of turning off faulty modules under
software control. On initialization , these registers can , like the configuration registers , be linked
together by the serial scan-path. A pattern of 1 's and O's scanned in corresponding to good and
faul ty modules . Modules (chips) with Alive set to 0 are disabled for video output , and their
configuration registers are disconnected from the scan-path during supertree programming.

As in the Pxp/2 prototype, a complete functional simulator was writ ten for each of the image-
generation functional blocks , the Translator, IGC, and Frame Buffer. This simulator could produce

1

PIXEL-PLANES 9

crude images to help check the correct operation of various algorithms. The simulators for the
Translator and IGC, with slight modifications , became the driver programs for the actual hardware.

Chip testing was done essentially on the display system itself. Since the memory chips are
intended to produce graphics images, we simply plugged a single chip into the prototype display,
exercised its functions , and observed the results on a color monitor where groups of memory bits
were interpreted as color intensities. This rather crude testing strategy was surprisingly effective,
even in diagnosing design faults.

(1)

(2)

(3)

Testing revealed several problems with the design:

Over-aggressive use of the newly-available buried contacts in the memory (design rules for
burieds were still rather vague) was most likely responsible for rather poor yield (approximately
20%).

The dual-ported memory cell design was flawed and failed to decouple the two ports fully.
Image-generation and video scan clocks therefore had to be synchronized.

Failure to carry through a rigorous timing analysis of the memory system and its video output
circuitry led to a timing fault that drast ically reduced scan-out speed (approximately 1 MHz),
but still allowed the chip to function. Under this limitation, the prototype display could be
populated only with eight chips per logical board.

The system works correctly under restrictions imposed by the design flaws. Its speed is limited
not by hardware design problems, but by the software that emulates the Translator and IGC. Since
this software runs about 1000 times slower than the on-chip processors , the system is fast enough
to produce only very crude animation (about 2-3 updates per second on an image with 6 polygons).

The module-level fault tolerance scheme using the Alive register was successfully tested on the
Pxpl3 prototype. In fact , the entire serial-shift mechanism for Alive, supertree configuration, and
global-token passing worked successfully on first silicon.

Building and testing the Pxpl3 prototype brought forcefully to our attention the need to
build hardware to execute the Translator and IGC func t ions . The experience also suggested three
important design changes in the memory chip:

(1) The fabrication yield for the Pxpl3 chips would have been great ly improved (better than 2x)
with the addition of a redundant memory column and a redundant row.

(2) The dual-ported memory scheme did not appear to be a very effective way to support scan
refresh , even had it been successfully implemented. It provides much higher bandwidth in the
second port than is required by the scan-out process and requires a memory cell about twice
the size of a convent ional cell .

(3) Since the multiplier tree in Pxpl3 is implemented essentially as shown in Figure 4, the tree
must be flushed after the formation of each result , in order to clear the carry registers at each
node. A 30% speedup could be achieved if the multiplier were more fully pipelined.

3 .3 Pxp14

The improvements suggested by the Pxpl3 prototype have been built into a new enhanced
memory chip (Pxpl4} , in fabrication at the time of writing. The chip contains 64 pixels, each with
72 bits of memory. In 4-micron nMOS, active circuitry (excluding pad frame and wiring) is 7.5 x
4.0 mm and contains about 33,000 transistors. Of this area, about 70% is devoted to memory, 20%
to the binary-t ree circuitry, and 10% to the pixel ALU. With MOSIS's 3-micron fabrication, two
modules (128 pixels) can be built inside a MOSIS-standard pad frame.

The system built around this chip will be exp andable to 512 x 512 pixels with 72 bits/pixel (or it
can display 1024 x 1024 pixels with 18 bits/pixel) . This system will be hosted by a high-performance
workstation that will store and manipulate image data-bases, provide user interaction, and initially
carry out part of the polygon transformation tasks in scene generation. (Later versions of the

Fl"l ef I 0 Sletn •• x-s.,.,.,,..

Plpelt .. RtMI

PIXEL-PLANES 10

(AII+C) l • p•t
,. y- • •Il l ,u.,.

PI pelt .. C•ll
te Y- ••ltl plle ,.

Figure 8 : Circuit ry fo r p lp ellnlng tree o peration•. The X-•upertree le •hown, but the •eh eme
1• u•ed ln t he Y -tree u well.

system will perform t ransformations using special hardware , such as the Geometry Engine in the
Silicon Graphics IRIS [Clark, 19821).

The following paragraphs detail va rious design enhancements in the current memory chip.

M ultiplier Pipelining

Multiplier operations arc fully overlapped by includin g a small amount of addition al hardware
for a p ipeline r egister. Figure 8 shows t he details of this scheme, which differs somewhat from
tha t in convent ional pipelined mult ipliers [Lyon , 197GJ. The pipelining register is 'sticky ': when
it receives a logic-1 it is locked into this state until a global clear is generated . Thus, a stream of
1 's marches down the multiplier just behind the formation of par tial product s contributing t o the
MSB of the result , and just ahead of th e LSB of the new constant coefficient. When the stream of
1 's reach es the last st age , a clear is generated that simul taneou sly re-enables multiplication at all
stages.
M em ory D esign

Pxp /4 uses a 4-transist or dynamic memory cell that has the useful proper ty of refreshing itself
during a read op eration. Since each memory row is connect ed on ly t o its pixel ALU, no sp ecial
sense amplifier is needed for read access ; simulat ions show th at th e memory operates faster (about
20 M Hz) without one.

The video output port of the pixel memory is implemented as a sin gle double-buffered r egist er
per chip , t he Shadow Regist er , in which a copy of the current ly selected pixel's memory is built up
sequentially. The scheme is shown in F igure 9.

A pixel selec tor points at the p ixel (memory row) needed for the next scan-line and puts a copy
of the data from each bit onto a one-bit bus during each read or write cycle. Simultaneously, the
memory address decoder output is delayed and used t o load data from this bus into the element
of the shadow register corresp onding to the selected memory bit. T hus, as each bit of memory is
'visited ' during image generation , it is cop ied into the master half of the Shadow Register . At the
end of a scan-line, the Video Controller unloads the master into the slave of the Shadow Register ,
where the data is available for output . The Shadow Register mechanism is much more space-efficient
than a full dual-port ed memory. It requires some care, however , ir: d esign and in operation t o avoid
data corruption due to synchronization failure and t o ensure that image-intensity bits are visited

-.

PIXEL-PLANES 11

7Z- lit Pint ,.,._,,

7Z- IIt Plul ,.,._,,

Figure 9: VIdeo memory port Implemented u a Shadow Reglater.

often enough to update the register once per scan-line. Neither of these problems is difficult to
overcome in practice.
Redundant Modules and Circuits

Pxp/4 retains the Alive mechanism for module fault tolerance that was tested in Pxp/3 and
adds circuitry to support redundant memory elements to make each module more robust .

The chip contains one extra memory column. A redundant-column address register is added to
the chip 's configuration register , so that the address of the column to be replaced can be scanned
in during system initialization.

Provision of a redundant row is somewhat more difficult , since one of the ALU-memory
interfares must be re-connected to the redundant memory row. Re-connect ion cannot be readily
implemented without undue loss in system speed , so instead we provide an entire extra pixel with
ALU and complete sub-tree path . The 6 nodes of local tree above the redundant pixel are realized
simply by building a full 20 stages of supertree. The configuration (address) registers in these
stages contain the address of the redundant pixel, and are loaded with the rest of the address at
initialization. Redundant row and column enables are also provided to tum the entire mechanism
off.

The redundant column circuit ry requires only about 1.4% of the total active circuit area and
the rrdundant row about 5.3%.

3.4 Buffered Pixel-Planes

One drawback of our present system is that the full parallelism cannot be u t ilized subsequent
to scan-conversion. During visibility and painting calculations, all pixels outside the currently
processed primit ive are idle.

We are investigating an alternative system design, called ' Duffered Pixel-Planes', that improves
parallelism. A modified Image Generat ion Controller with accept/ reject circuitry and a FIFO is
fully integrated onto a custom chip, and many copies are distributed across the system, each
supervising a group of enhanced memory chips. The Translator sends bounding-box data for each
primitive ahead of its coefficients and ins tructions. Each IGC accepts or rejects the current primitive
based on the bounding box; if inside, coefficients and instructions are accepted and pushed into
the FIFO for processing.

We have simulated the behavior of such a system processing images of moderate complexity
(up to 1000 polygons), and we predict approximately 5-fold speedup with modest (10-polygon)
FIFO size.

\
•

4. Design Methodology
4.1 Tools

PIXEL-PLANES 12

For the nMOS realization of our current chips, we use mask-level layout , layout analysis, and
circuit simulat ion design tools distributed by the University of California at Berkeley.

We have written inC the logic'-gate-lev'el simulators for the memory chip and for other system
components. These simulators are used first to check the correctness of the logic design for the
system, then to generate test vectors for switch-level simulation of the chip circuit ry.

Most of the design of the custom chips was done by two designers working on a Digital
Equipment VAX 11/750 minicomputer with two Lexidata 3700 color displays .

The lack of well-integrated design tools that go smoothly from silicon design to board design is
a serious impediment to our work. Board-level logic design and analysis are still done using paper
and pencil, with considerable assistance from standard UNIX program-development tools . Boards
are layed out with a graphic chip-layout editor and fabricated using MOSIS 's PC-board service.

For some time we have been working on a CMOS version of the enhanced memory chip. Mask
level design of CMOS projects is unattractive for two reasons: First , the additional complexity
of CMOS technology makes an already-difficult layout task much more tedious. Second, the
fabrication technqlogy is developing rapidly, and it is not clear that scalable design rules for
mask layout will be an effective way of tracking these advances. We have therefore been using
(and assist ing in the development of) the VIVID• symbolic-layout design system [Rosenberg et
al., 1985]. The system includes a hierarchical layout compactor that translates symbolic layout to
mask with the help of a technology file that captures all relevant information about a particular
fabrication process. In this way a given symbolic design can hope to survive considerable change
in the target fabrication technology.

4.Z Design Style
Constm cting a full -scale, full-speed system is a much more complex task than building a small

prototype. The principal lesson learned from our early prototype construction was the need for
complete documentation and precise interface specifications. We have therefore adopted for all
system components a design style whose clements are:

(1) The system is decomposed into modules following a restricted hierarchy, in which only leaf-cells
are allpwed to contain circuit elements. The hierarchy is maintained in parallel in the physical
domain (e .g., chip layout) the logical domain (e.g. , logic schematics) , and the behavioral domain
(e.g., simulators that model the logic) . Composit ion cells may contain only interconnection
information (abuttment, for example, within a chip layout) and other cells. Leaf cells may
contain only circuit elements (logic gates in the logical description; transistors, wires, contact
cuts in the physical description) .

(2) Borrowing from strongly-typed programming languages , we impose a strong-typing scheme
on all signals in the system. To ensure that modules are 'correctly connected' (e.g., timing
convent.ions and active-levels are observed) , only a few signal types are allowed for connection
between modules. The typing scheme is based on non-overlapping mult i-phase clocks, and if
applied carefully, avoids race condit ions in sequent ial circuits. The signal types are encoded in
a suffix attached to every signal name, providing a powerful documentat ion aid.

(3) Special hazards are involved where clocking convention (e.g. edge-triggered vs . level-sensitive
latching) and implementation technology (TTL logic vs. custom MOS) changes, particularly
at the chip I/ 0 pads. To help assure that this interface will work properly, we define its timing
convent ions in a simple way, using two-sided timing constraints.

(4) Every major module in the design is modeled by a functional simulator. The simulated modules
are tested separately, then plugged together to check the correctness of interfaces and overall

• VIVID is a trademark of the Microelectronics Center of North Carolina

PIXEL-PLANES 13

operation of the simulated system. The simulators provide test vectors for chip simulation and
testing.

The signal-typing/timing schemes are similar to [Noice et al., 1982) and [Karplus, 1984). Other
elements of the style were influenced by [Lattin et al., 1981; Stefik and Conway, 1982; Stefik et
al., 1982], among other sources.

4.3 Clocking Tec.hniques
Our nMOS custom chips use a high-voltage clocking scheme ('hot clocks') suggested to us by

[Seitz, 1982) and described in [Seitz et al., 1985). The main advantage of the technique is that
n-enhancement transistors transmit a logic-HI without threshold drop and at much higher speed.
In general, this clocking method produces layouts that are denser and much faster than conventional
single-supply designs.

In a system with many custom chips, it is extremely inconvenient to generate these clock signals
off-chip at a non-standard voltage. We have therefore built on-chip clock drivers that perform level
translation and single-to-2-phase conversion. A separate input pin , biased typically at 8 volts,
powers only these circuits. We have successfully built and tested a number of such high-voltage
drivers, and our current design charges 100 pf to 7 volts in about 10 nsec.

The clock signals are produced in a single generator on the chip and distributed, so far as
possible, continuously in metal wiring. For routing purposes, the clocks are second in importance
only to Vdd and ground. For the inevitable cross-unders , we use ' low resistance wire' , essentially
an extended buried contact whose sheet resistance we have measured at about 7-8 ohms/square .

Level-sensitive register controls require qualified clocks that are generated in clocked, boot
strapped drivers [Joynson et al. , 1972). The design of these compact drivers is not difficult, and
they can be made to generate qualified clocks that follow the primary clock signal with nearly zero
delay.

5. Pixel-Planes Algorit.hms
In this section we briefly describes how polygonal images are processed in Pixel-planes, and we

outline several new algorithms, more fully described in [Fuchs et al., 1985). The timing estimates
in this section assume that the Pxpl4 chips are clocked at 10 MHz.

Rendering smooth-shaded polygons requires scan conversion, hidden surface elimination , and
shading calculations:

Scan conversion is outlined in Figure 10. Processing begins by enabling all pixels in the
display. Edges are encoded in linear equations of the form F(x, y) = Ax+ By+ C = 0, and the
sign of F is tested at every pixel to determine visibility. Scan conversion leaves pixels outside
the current polygon disabled; only those inside participate in further visibility and shading
calculations.

Hidden surface elimination can be performed using a depth-buffer algorithm in which the
z-coordinate of a pixel is encoded in a set of coefficients A , B , C by the linear expression
z = Ax + By + C. Each pixel stores a value of z for the closest polygon so far processed and
compares this value with the incoming z. H the new z is closer, the current polygon is visible
at this pixel, and it remains enabled for shading, updating its z-buffer. H the stored z is closer
than the new z, the pixel is disabled during shading.

Smooth shading is accomplished by computing a set of coefficients for each of R, G, and D, so
that the color-intensity at each pixel is approximated by F(x,y) . Gouraud-like smooth shading
can be carried out by painting each multi-sided polygon as a series of triangles (scan-conversion
and hidden surface elimination, however, need only be done once for each polygon) .

Polygon processing time depends on the number of edges and the number of bits needed
to represent the function F(x, y) for each operation. Approximately 30,000 4-sided polygons of
arbitrary shape and orientation can be processed per second, using the steps outlined above.

I
)
•

Polygon tnput data:
At , Bt , Ct for each edge I

For each edge t deftne:
F(x,y) = A1x • B1y • c1

Pixel at (x ,y) ts Inside polygon
If and only If :

ft(x,u> > o for all 1

PIXEL-PLANES 14

Figure 10: Scan-covertlng polygon• ualng linear expreaalona.

Shadows are important depth cues in interactive systems, and we have developed a method ,
similar to [Brotman and Dadler , 1984], for casting shadows from arbitrary light sources using using
shadow volumes [Crow, 1977]. For each polygon in the image, the set of visible pixels that lie in
the frustum of the p olygon 's cast shadow are determined, and the color intensity of these pixels
is diminished by an appropriate factor . Shadows are post-processed after a non-shadowed polygon
image has been generated . The shadows for approximately 78,000 polygons can be computed per
second.

Filled circles can be rendered rapidly in Pixel-planes by treating a circle as a polygon with
one edge . The method separates the equation of a circle into a linear part that differs for each
circle size and position, and a quadrat ic part that is the same for all circles. The quadratic
part is pre-computed and its distinct values are loaded into every pixel at system initialization.
Cirrks are process<'d by encoding center-position and radius in coefficients A, D, C and adding
the linear exprcs::~ ion t o the stored quadratic term at each pixel. This method can readily be
extended to render the other conic sect ions , such as ellipses. Spheres can be approximated by a
quadratic surface, depth-sorted using a Z-buffer , and highlighted from an arbitrary light source.
Approximately 34,000 spheres can be processed per second.

Texture mapping can be performed by using the linear expression evaluator to compute a
texture plane address at every pixel. The appropriate color value for a pixel is then looked up in a
texture table, transmitted entry by ent ry to the Smart Frame Buffer .

Anti-aliasing may be accomplished by one of two methods. The first , similar to ' super
sampling', blends a newly computed image with a previously con;tputed image in a series of steps
that successively refine the image. To support rapid interaction, the image is only refined when
stationary. A second approach uses a method similar to that used on the Evans and Sutherland
CT -5 real-time image generation system [Schumacker, 1980]. This method assumes that a visibility
ordering of the polygons has already taken place, and uses a sub-pixel coverage mask to compute
the anti-aliased image.

Transparency effects can be produced using the sub-pixel coverage mask for successive refine
ment , or by disabling patterns of pixels (e.g. a checkerboard) during polygon processing.

Adaptive Histogram Equalization (AHE) [Pizer et al., 1984] is a powerful image processing
technique used for grey level assignment and contrast enhancement of Computed Tomographic
(CT) images. A local histogr am is computed for every pixel in the image, and then used to
compute a new grey level assignment for that pixel. For a 512 x 512 image, this method requires
about 5 minutes of computation on a VAX 11/ 780, and is therefore too inefficient for most uses.
The parallel processing power of Pixel-planes can be used to compute simultaneously the grey
level assignment for each pixel in the image, without the need for histogram calculation. A rank
counter , maintained in a portion of each pixel's memory, can be incremented using the pixel ALU.
The intensity of a given pixel is broadcast and compared , in parallel, to the intensity of all pixels

PIXEL-PLANES 15

that are within a local region. The rank counter is incremented at all pixels in the local region
whose intensity is greater than the given pixel. After all pixels have been processed, the rank
counter values arc scaled and d isplayed. We estimate a 512 x 512 image will require .approximately
4 seconds to compute on Pixel-planes.

6. Comparison with Other Architectures

We divide alternative VLSI-based architectures for graphics into two classes (as outlined in
[Abram and Fuchs, 19841) : those that divide the image plane into sub-planes, with a processor
for each subdivision, and those that divide the object database, assigning a processor to each
subdivision. The Pixel-planes system is an example of the former, and we therefore compare it
with two other systems of this type.

6.1 Architectures for Image-plane Subdivision

Several groups (!Fuchs and Johnson, 1979]; [Clark and Hannah, 1980]; [Gupta et al. , 1981])
have proposed systems that make more effective use of commercial RAM chips than conventional
frame buffers; we refer to this as the interlaced approach. In [Clark and Hannah, 1980], the RAM's
are interlaced so that on any 8 x 8 area of the screen, one pixel comes from each of the RAM's;
each memory contains every eighth pixel in every eighth row. The scheme uses two layers of special
processors organized in columns and rows, with a row-processor in charge of each RAM chip (or
group of RAM chips when more than 1 bit/ pixel). An entire 8 x 8 patch on the screen can be
accessed with a single memory reference by the 64 row processors, so a polygon (or other primitive)
roughly the size of a patch , or larger, can be processed with considerable parallelism.

A major advantage of the interlaced approach is that it uses high-density commercial RAMs
and yet achieves performance greatly improved over conventional frame buffers with relatively
few custom chips. This design is hampered, however, by the bandwidth limitations imposed by
separating memories and processors onto separate chips.

Another recent approach, described in [Demetrescu , 1985], employs 'Scan-Line Addressable
Memories' (SLAM's). A system with 1024 x 1024 one-bit pixels is organized in 16 rows, each with
a Scan-Line Processor in charge of 4 SLAM chips. Each of these units contains and cont rols all
of the pixels in 64 successive scan-lines. Each SLAM chip contains a conventional RAM array,
organized as 64 rows of 256 one-bit pixels, augmented with an array of very simple processors that
operate in parallel on all pixels in a row. In one cycle of operation, all pixels in 16 scan lines can
be accessed. The Scan-Line Processors provide buffering of graphics primitives, so that very high
parallelism can be achieved .

The system-level implementation of a SLAM-based display should be very clean . In contrast
to the interlaced design, high-bandwidth memory-processor communication wiring is completely
encapsulated in the SLAM chips. Commands and data are broadcast from each Scan-Line Processor
to its SLAM's over a low-bandwidth bus. The SLAM design solves the display-refresh problem
without interrupting image processing (by including a display shift register on the SLAM chip).
These are the principal features common to the SLAM and Pixel-planes approaches .

6.Z Comparison with Pixel-planes

For today 's high-performance workstations, where the display requires one or a few bit-planes
and handles (mainly) multiple windows with text, lines, and flat-shaded polygons, the SLAM
approach is ext remely attractive. For such applications, it appears to be considerably faster
than either the interlaced or Pixel-planes designs and is several orders of magnitude faster than
conventional frame buffers . The cost of the approach, like ours , is the need to use custom-designed
memory chips. The processors on the SLAM chip are extremely simple and appear to require very
little area, however, perhaps as little as 1/10 that of our processors.

The Pixel-planes system is tar geted at applications more demanding than the displays in current
workstations, such as medical display and imaging, molecular modeling, mechanical design systems,

I .

•

..

PIXEL-PLANES 16

and flight and navigational simulators. These applications require interaction with 3D images
needing visibility determination, smooth shading, shadows , and textures; images with perhaps
thousands of primitives and significant depth complexity must be updated at frame rates.

Methods for improving perceived image quality necessarily rely on storing additional informa
tion at each pixel. Clearly, the most effective means of improving performance is accessing and
processing this data in parallel, closely associating a large amount of pixel memory with a pixel
processor. The Pixel-planes design provides the power of a processor per pixel, at relatively modest
cost in silicon area, and a very general method for computing images.

The interlaced approach cannot grow gracefully in the dimension of bits/pixel because of chip
1/0 limitations. In the SLAM design, one alternative for growth in this direction is multiple
banks of SLAM, one for each bit plane. To expand such a system to the size accommodated by
the current Pixel-planes chip would entail a copy of the processor for each of 72 bit-planes, an
intolerable increase in silicon area. The other alternative is using a column in the SLAM to hold
all bits of a pixel, then bit-serially processing data; this alternative is similar to our approach , but
it fails to provide a very general image-computation method.

For applications that require accessing large amounts of memory per pixel, our system should
be denser and faster than either of the other approaches. In. effect, we have already paid the price of
accessing many bits/pixel: bit-serial data access and a more general (and costly) method of display
refresh.

1. Acknowledgements

We wish to thank Vernon Chi (Director) , Mark Monger, and John Thomas, of the UNC
Microelectronic Systems Laboratory, for design and technical assistance in building the Pixel-planes
system. We also wish to thank Alan Paeth and Alan Bell of Xerox Palo Alto Research Center for
coll aborating in the design of Pxpl2 and Pxpl3, Scott Hennes for assistance with the Pxpl3 chip,
Fred Brooks for the basic circle scan-conversion algorithm, and Turner Whitted for discussions
about ant i-aliasing and transparency algorithms.

8. References

Abram, G. D. and H. Fuchs . July, 1984. "VLSI Architectures for Computer Graphics," Proceedings
of the NATO Advanced Study Institute on Microelectronics of VLSI Computers, Sogesta
Urbino, Italy.

Brotman, L. S. and N. I. Badler. October, 1984. "Generating Soft Shadows with a Depth Buffer
Algorithm," IEEE Computer Graphics and Applications, 5- 12.

Clark, J . H. and M. R. Hannah. 4th Quarter , 1980. "Distributed Processing in a High-Performance
Smart Image Memory," LAMBDA, 40-45. (LAMBDA is now VLSI Design).

Clark, J . H. July, 1982. "The Geometry Engine: A VLSI Geometry System for Graphics," Computer
Grapbics, 16(3), 127- 133. (Proc. Siggraph '82).

Crow, F. C. July, 1977. "Shadow Algorithms for Computer Graphics," Computer Grapbics , 11(2),
242- 248. (Proc. Siggraph '77) .

Demetrescu, S. May, 1985. "High Speed Image Rasterization Using Scan Line Access Memories,"
In these Proceedings.

Fuchs, H. and B. Johnson. April, 1979. "An Expandable Multiprocessor Architecture for Video
Graphics," Proceedings· of 6th ACM-IEEE Symposium on Computer Architecture, 58-67.

Fuchs, H. and J . Poulton. 3rd Quarter , 1981. "Pixel-planes: A VLSI-Oriented Design for a Raster
Graphics Engine," VLSI Design, 2(3), 20- 28.

PIXEL-PLANES 17

Fuchs, H., J . Poulton, A. Paeth, and A. Bell. January, 1982. "Developing Pixel Planes, A
Smart Memory-Based Raster Graphics System," Proceedings of the 1982 MIT Conference
on Advanced Research in VLSI, Dedham, MA, Artech House, 137- 146.

Fuchs, H., J. Goldfeather , J.P. Hultquist , S. Spach, J . D. Austin , J. G. Eyles, and J. Poulton.
January, 1985. Fast Spheres, Shadows, Textures, Transparencies, and Image Enhancements
in Pixel-Planes, Technical Report 85-002, Dept. of Computer Science, University of North
Carolina at Chapel Hill .

Gupta, S., R. F . Sproull , and I. E. Sutherland . August, 1981. "A VLSI Architecture for Updating
Raster Scan Displays," Computer Graphics, 15(3), 71- 78. (Proc. Siggraph '81).

Joymon, R. E. , J. L. Mundy, J . F. Burgess, and C. Neugebauer. June, 1972. "Eliminating Threshold
Losses in MOS Circuits by Bootstrapping Using Varactor Coupling," IEEE Journal of Solid
State Circuits, SC-7, 217- 224.

Karplus , K. August , 1984. A Formal Model for MOS Clocking Disciplines, Technical Report 84-632,
Dept. of Computer Science, Cornell University, Ithaca, NY.

Latt in, W. W., J . A. Bayliss, D. L. Budde, J. R. Rattner , and W. S. Richardson. 2nd Quarter,
1981. "A Methodology for VLSI Chip Design," LAMBDA, 2(2) , 34- 44. (LAMBDA is now
VLSI Design). .

Lyon, R. F. April , 1976. "Two's Complement Pipeline Multipliers," IEEE 7ransactions on
Communications, COM-24, 418- 425.

Noice, D., R. Mathews, and J . Newkirk. 1982. "A Clocking Discipline for Two-Phase Digital
Systems," Proc., IEEE International Conference on Circuits and Computers, 108- 111.

Pizer , S. M., J . B. Zimmerman, and E. V. Staab. 1984. "Adaptive Grey Level Assignment in CT
Scan Display," Journal of Computer Assisted Tomography, 8(2) , 300- 305.

Rosenberg, J. B., C. D. Rogers, and S. Daniel. 1985. "An Overview of VIVID, MCNC's Vertically
Integrated Symbolic Design System," To appear in the Proceedings of the 1985 Design
Automation Conference.

Schumacker, R. A. November 1980. "A New Visual System Architecture," Proceedings of the 2nd
Annual IITEC, Salt Lake City.

Seitz, C. 1982.Private Communication.

Seit z, C. L., A. H. Frey, S. Matt isson, S. D. Rabin, D. A. Speck , and J. L. A. Snepscheut . May,
1985. "Hot-Clock nMOS," In these Proceedings.

Stefik , M., D. Bobrow, A. Bell , H. Brown, L. Conway, and C. Tong. January, 1982. "The Partitioning
of Concerns in Digital System Design," Proceedings of the 1982 MIT Conference on Advanced
Research in VLSI, Dedham, MA, Artcch House, 43- 52.

Stefik, M. and L. Conway. April 28, 1982. Toward the Principled Engineering of Knowledge, KB
VLSI-82-18, Xerox, ralo· Alto.

