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Pixel-planes is a· VLSI-based raster graphics machine that will support real-time interaction 
with three-dimensional shadowed, shaded, and colored images. The system 's cost and complexity 
will be comparable to present-day line drawing systems, making it suitable for use with high
performance workstations. Potential applications include computer-aided design , medical display 
and imaging, molecular modeling , and simulators for Bight and navigational training. 

The ftwdanwntal ideal\ in this dt'sign have been previously publil\ht'd [F\tchs and Poulton, 1081; 
F\tchs et al., 1082]. This paper reports recent progress toward building a full-scale working 
Pixel-planes system, development of a number of new graphics algorithms for the machine, and 
rcfint'ments in system architecture and design methods. 

Much of current research in experimental graphics systems is aimed at improving the speed of 
image generation by dividing the display into small regions , each of which is handled by separate 
concurrent processors [Clark and Hannah, 1980; Gupta et al., 1081 ; Demetrescu, 1085]. In 
Pixel-planes, this division is imbedded in a binary tree that performs the bulk of the system 's 
computations and distributes the results to all pixels. Each pixel consists of an array of memory 
elements and a small processor that only performs operations local to the pixel. The heart of 
the system is a Smart Frame Buffer consisting of an array of identical custom chips that contain 
the binary tree , pixel memories and processors, and video scan-refresh circuitry. These enhanced 
memory chips employ a moderately dense, conventional dynamic RAM that takes up about 2/3 of 
the chip's silicon area; the processing circuitry takes up the remaining 1/3. 

The fundanwntal operation of the Pix<"l-planes system is calculating linear expressions of the 
form Ax + Dy + C where x andy are the coordinates of a pixel and A, D, and Care data inputs to 
the system. These expressions are calculated bit-serially in a binary tree multiplier /accumulator, 
simultaneously for all pixels. The system's hardware is not built to execute a specific set of 
graphics algorithms. Instead, many different algorithms can be recast into forms that evaluate 
linear expressions and/or require only pixel-local operations . We are continually surprised at the 
variety of algorithms that we and others are able to express in this form, and it is clear that the 
architecture is much more powerful and more general than we had first imagined. 

• To appear in the P roceedinss of the 1985 Chapel Hill Conference on VLSI, May 15- 17, 1985. This research 
supported in part by the Defense Advance Research Projed Asency Contract. number DAAG29-83-K-0148 (monitored 
by U.S. Army Rt>St-arch Office, Research Triansle Park, NC) and the National Science Foundation Grant number 
E CS-8300970. 

• • Department. of Mathematics, Carleton Colles e, Northfield, MN , on sabbatical at. Depa.rtment of Mathematics at 
University of North Carolina at Chapel Hill. 
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Pixel - Planes Graphic lnglne 

Figure 1: Ptxel-Planea Graphlca Engine replaeea the ruterlser, frame buffer, and video 
eontroller In a conventional graphlea ayatem. 

Z. Pixel-Planes Graphics System 

Z.l System Overview 

Figure 1 shows the relationship between the Pixel-planes graphics system hardware and a 
conventional color graphics system . 

The 'front end' of the convent ional graphics system is a pipeline of special processors that 
manipulates an image database. The database contains (typically) a list of polygons that tile 
the surfaces of the objects in a scene. Each polygon is described as a list of vertex coordinates 
(x ,y , z in 'world' coordinates ) and colors (values of Red , Green, Blue that specify the intrinsic color 
of the vertex). A transformation engine operates on the coordinates of the vertex list for each 
polygon, transforming the polygon to 'eye' coordinates in response to user input from joystick , 
trackball , or some similar device. Next, polygons (or portions of polygons) that are outside t he 
viewing pyramid are clipped and perspective division is performed to transform 'eye' coordinates 
to 'screen ' coordinates. Finally, a lighting model calculator modifies each vertex 's intrinsic color 
according to the position and intensity of light sources. The output of the front-end pipeline is still 
a list of polygon vertices , but wi th ver tex coordinates and colors transformed to the proper value 
for display. 

In advanced color gr aphics systems , the rasteriz.er performs a series of steps needed to translate 
a list of polygon vertices into a smooth-shaded , rendered , digital image, with hidden surfaces 
properly removed , and perhaps anti-aliased to reduce pixelization artifact s. In general, these 
calculat ions must be performed for every pixel for every polygon processed, implying massive 
amounts of computation and very large memory bandwidth. 

The Pixel-planes Graphics Engine replaces the rasterizer , frame buffer, and video controller of 
a conventional system. Its main component is a Smart Frame Buffer composed of custom VLSI 
enhanced memory chips. It addresses the computational problem with a highly parallel processor 
that mimics a processor per pixel. The memory bandwidth bottleneck is overcome by intimately 



connecting processing circuitry and memory. 

z.z Pixel-Planes Graphics Engine 

The components of the Engine are: 
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Th«> Translator , a spec ial purpose micro-programmable floating-point computer , converts the 
scent' d<·script ion from a polygon vertex list into the form of coefficients A, D, C of the linear 
expression F ( x , y ) = Ax + By + C. It also produces an encoded instruction for each step in 
processing polygons or other primit ives (e.g., edge, z-compare, circle, paint-Red) . Translation will 
involve , for example, describing an edge of a polygon in the form F (x ,y ) = 0, or specifying the 
polygon's planar surface in the form z = F(x, y) . In the system now under construction , the 
Translator is a 5 MFlop micro-programmable engine based on the Weitek 1032/1033 floating-point 
chip set. 

The Image Generation Cont roller (IGC) converts the word-parallel, floating-point A, B, C 
coeffici«>nts from the Translator to bit-serial , 2's complement data, decodes each instruction into 
a st ream of control words, and outputs this data and control along wi th the clock for the Smart 
Frame Buffer. Currently, the IGC is implemented as a custom chip that serializes the coefficient 
data and a micro-programmable cont rol sequencer built using standard TTL parts. 

The Smart Frame Buffer is organized as a series of ' logical boards', each with an array of 
enhanced memory chips, as shown in Figure 2. This organization reduces the bandwidth (pin
count , operat ing speed) necessary at the memory chip 's video-data output port . Each logical 
board con tains a 32-bit-wide register for video dat a, and successive logical boards are daisy-chained 
together to form a high-speed shift-train. Every L cycles (where Lis the number of logical boards), 
shifting i ~ d isahkd and the shift-train is loaded from a parallel set of registers on each board . While 
shifting is enabled , these parallel registers are loaded , one byte at a time, from selected memory 
chips. 

Data, cont rol, and clocks both for image generat ion and video output are broadcast to the 
enhanc(•d memory chips. No data or control need be returned from the memories to the IGC or 
Video Cont roller , so the busses can easily be pipelined for high-speed operation. 

In addition to these two uni-directional busses, a single serial scan-path links all memory 
chips in the frame buffer. During system operat ion, the scan-path takes the place of chip-address 
decoding, carrying a series of scan tokens that determine which set of memory chips is enabled 
for video output (only one chip on each logical board is enabled at one time). During system 
initialization, the scan-path is used to load various configuration registers, as discussed in Section 
2.3. 

The Video Controller is similar to those in convent ional systems, with the except ion of the 
token-passing method of addressing. The current version is capable of support ing a variety of 
display types (30 and 60 Hz, interl aced and non-interlaced , NTSC and non-standard) and any 
number of enhanced memory chips. 

Z.S Enhanced Memory Chips 

Figure 3 is a block diagram of the enhanced memory chip. It contains the Mult ip lier that 
implements the binary-tree linear-exp ression evaluator, an array of pixel ALU's, and a Memory 
system that stores dat a for each pixel and provides a video scan-out mechanism . 

A conceptual model of a binary-tree mult iplier / accumulator is shown in Figure 4. This 
structure is recognizable as a variat io~ on the simple serial-parallel multiplier [Lyon , 1976J, where 
both possible values of partial p roduct are generated at each stage. If such a tree has N levels, and 
A contains K significant bits , A must be preceded by (N - 1) O's; 2N distinct values of Ax + C 
will be generated (0 < = x < 2N ), each value being N + K + 1 bits long. 

To generate the linear expression Ax + By + C , two binary-tree multiplier/ accumulators are 
stacked one atop the other. For a system with 1024 x 1024 pixels, a 20-level t ree is required. The 
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Figure 2: Pixel-Plane• Smart Frame Buffer organisation. 

top 10 levels of the tree calculate the 1024 values of Ax + C. The bottom 10 levels can be thought 
of as 1024 subtrees, each of which rece ives one value of Ax + C as its root input, gets B as its side 
input, and .fcneratcs 1024 values of Ax + By + C. For a system with N x N pixels , the binary tree 
requires N - 1 multiply /accumulate stages. It performs the same function , at the same speed, as 
a full 2N-stagc multiplier at every pixel (requiring 2N2JogN stages). 

Only a small fraction of the pixels in a display can be put on a single chip , so it is necessary to 
break the binary t ree into multiple chips. This is done by implementing a small sub-tree on each 
chip that covers only the pixels on t he chip. A 'supertree' on each chip implements the tree levels 
above the sub-tree . It contains one multiply/ accumulate stage for each level above t he sub-tree. 
As shown in Figure 5, registers in the supertree are loaded at system initialization to map a path 
through the full t ree to the local subtree. This defines the position of the chip's 64-pixel column in 
the full image. 

It. is possible, of course, to design a system without supertrees. If each chip were equipped 
with one extra t ree node whose outputs go off-chip, the tree levels above each local subtree could 
be completed using inter-chip wiring. This external wiring would , however, reduce system speed 
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Figure 3: Block diagram of the Pixel-Planes memory chip. 

nn • • .N • 
nn 
.. . 
~t 

M Tree 

~h4e 

Figure 4: Conceptual model of binary-tree linear expre••lon evaluator. 

and complicate board-level construction. The configurable supertree on our current chips has 14 
levt-ls, requiring only another 14 multiply/ accumulate stages and 14 registers- a relatively modest 
penalty in silicon area. It also makes possible a module-redundancy scheme, described below, that 
supports fault tolerance in our system. 

Figure 6 shows the block diagram of the ALU at each pixel. Logical operations in the ALU 
are performed by a one-bit adder with a multiplexer/complemcntcr on each of its three inputs. All 
ALU's in the system receive function-select and register-load controls broadcast from the IGC, so 
the ensemble of memory chips has SIMD concurrency. The ALU contains an EnabJe register that 
controls memory write access, allowing each pixel to determine local~y whether current memory 
contents can be overwritten. 
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Figure 6: Block diagram or the pixel ALU. 

The Memory system consists of a relatively dense dynamic RAM array. Each column of cells in 
the array contains corresponding bits in each pixel on the chip. Each row contains all of the bits in 
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a pixel and is equipped with read/write circuitry ; thus the 'word width ' is extremely wide relative 
to a conventional memory. The memory also must provide a means for the Video Controller to 
access memory bits containing color-intensity informat ion . 

3 . System Reali•ations 
This section describes our experiences building several Pixel-pl<Wes display systems. Our first 

enhanced memory chip was intended as a first VLSI design exercise and not intended to become 
par t of a working display. Two small prototyp e displays have been built with second- and third
generation enhanced memory chips {Pxp/2 and Pxp/3) , and they were sufficient to p rove the basic 
concepts in the design. We believe, however, that it is extremely important to build a system large 
enough to support ' real ' applications; only in this way will we convincingly demonstrate the utility 
of t his approach to build ing high-performance graphics machines. We are therefore construct ing a 
much more ambit ious system using fourth-generation chips (Pxpl4) t hat will grow to a fu ll-scale, 
full-speed working display within the next year. 

3.1 PxplZ 
Our second 111emory chip design [Fuchs et al., 1982] included the local subtree for 64 pixels, a 

memory array with 16 bits/pixel and a single read/write port , and a simplified ALU with only a 
Carry generator. It lacked circuit ry for t he remainder of t he t ree, and could therefore only be used 
to build a 'toy' system. 

A chip t ester was built using a microcomputer with a parallel 1/ 0 port , the 10 chips received 
from fabricat.ion were t ested , and four were found to be mostly functional. The tester then became 
the host for a small prototype display, with Translator and Image Generation Controller functions 
carried out by software running on the microcomputer . The Pxpl2 prototype verified the hasic 
concepts in t he design, execut ing (very slowly!) a basic set of polygon-oriented operations (polygon 
area definition , hidden-surface calculations using a depth-buffer, Gouraud-like smooth shading). 

This exercise immediately suggested a number of OPl'lign improvements: 

( 1) Since the memory had only a single port , image-generation had to b e halted to refresh t he 
d isplay. This required a complex cont rol mechanism with an external scan-line buffer to allow 
both image generation and video data scan-out to access pixel memory. It was clearly essential 
to 8eparate these functions and to allow them to be asynchronous. 

(2 ) Working through the details of generating separate root inputs for the sub-trees on each chip 
led to constructive thinking about supert rees. 

{3) Several interesting algorithms had been proposed for Pixel-planes that would require both a 
more complex ALU and more memory b its/pixel. 

Neither chip t est ing nor system operation would have been easy (or perhaps possible) if we had 
not fi r8t written a functional simulator for the ch ip. This simulator modeled all of the circuitry in 
the chip at the gate level, was event driven, but did not model circuit delays. It es,sentially captured 
the ftmctional specification for the chip in an executable form. This simulator was written in a 
standard p rogramming language (Pascal), a pract ice that we have maintained through the current 
version of the design (current simulators are written in C). 

3.2 Pxp13 

Based on our experience with the fi rst prototype, the next chip (Figure 7) contained many 
architectural improvements: 

( 1) A complete t ree was included on each chip , implemented with the supertree notion described 
above. 

{2) The ALU was mod ified to t he form shown in Figure 6 to support a variety of new algorithms. 

(3) Memory size was increased to 32 bits/pixel. We used a dual-ported memory cell to allow 
separate, asynchronous access to the pixel memory for scan refresh. 



• 

T 

PIXEL-PLANES 8 

Figure 7: Photo of PxplS memory chip ahowlng maJor function blocks. 

(4) Since memory access on the video-data port always proceeds in scan-line order , we installed 
a pixel-addressing mechanism that uses serial-shift tokens. A 'global' token that passes from 
chip to chip performs chip select, while a ' local ' token register inside each chip manipulates the 
pointer to the currently selected pixel. The token-addressing scheme reduces chip pin-count 

. significantly, and is a faster mechanism than conventional address decoders. 

(5) Since a serial shift-path was already needed to support the global token mechanism, we elected 
to make multiple use of this path. During system initialization, this inter-chip path can be 
diverted on each chip into the 'configuration ' register that programs the supertree, thus linking 
all configuration registers into one large scan-path. 

(6) Reasonable yield from fabrication at 4 micron feature size allows only 64 pixel& on a chip (1.5 
micron feature size would allow a few hundred pixels per chip). Current fabrication limits 
led us to investigate other ways of getting more memory on a single packaged device. We 
saw that in future chip implementations, the 64-pixel chip might become merely one of a 
number of modules on a much larger chip, where some modules are allowed to be faulty. An 
Alive register was installed on the chip to provide a way of turning off faulty modules under 
software control. On initialization , these registers can , like the configuration registers , be linked 
together by the serial scan-path. A pattern of 1 's and O's scanned in corresponding to good and 
faul ty modules . Modules (chips) with Alive set to 0 are disabled for video output , and their 
configuration registers are disconnected from the scan-path during supertree programming. 

As in the Pxp/2 prototype, a complete functional simulator was writ ten for each of the image-
generation functional blocks , the Translator, IGC, and Frame Buffer. This simulator could produce 
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crude images to help check the correct operation of various algorithms. The simulators for the 
Translator and IGC, with slight modifications , became the driver programs for the actual hardware. 

Chip testing was done essentially on the display system itself. Since the memory chips are 
intended to produce graphics images, we simply plugged a single chip into the prototype display, 
exercised its functions , and observed the results on a color monitor where groups of memory bits 
were interpreted as color intensities. This rather crude testing strategy was surprisingly effective, 
even in diagnosing design faults. 

(1) 

(2) 

(3) 

Testing revealed several problems with the design: 

Over-aggressive use of the newly-available buried contacts in the memory (design rules for 
burieds were still rather vague) was most likely responsible for rather poor yield (approximately 
20%). 

The dual-ported memory cell design was flawed and failed to decouple the two ports fully. 
Image-generation and video scan clocks therefore had to be synchronized. 

Failure to carry through a rigorous timing analysis of the memory system and its video output 
circuitry led to a timing fault that drast ically reduced scan-out speed (approximately 1 MHz), 
but still allowed the chip to function. Under this limitation, the prototype display could be 
populated only with eight chips per logical board. 

The system works correctly under restrictions imposed by the design flaws. Its speed is limited 
not by hardware design problems, but by the software that emulates the Translator and IGC. Since 
this software runs about 1000 times slower than the on-chip processors , the system is fast enough 
to produce only very crude animation (about 2-3 updates per second on an image with 6 polygons). 

The module-level fault tolerance scheme using the Alive register was successfully tested on the 
Pxpl3 prototype. In fact , the entire serial-shift mechanism for Alive, supertree configuration, and 
global-token passing worked successfully on first silicon. 

Building and testing the Pxpl3 prototype brought forcefully to our attention the need to 
build hardware to execute the Translator and IGC func t ions . The experience also suggested three 
important design changes in the memory chip: 

( 1) The fabrication yield for the Pxpl3 chips would have been great ly improved (better than 2x) 
with the addition of a redundant memory column and a redundant row. 

(2) The dual-ported memory scheme did not appear to be a very effective way to support scan 
refresh , even had it been successfully implemented. It provides much higher bandwidth in the 
second port than is required by the scan-out process and requires a memory cell about twice 
the size of a convent ional cell . 

(3) Since the multiplier tree in Pxpl3 is implemented essentially as shown in Figure 4, the tree 
must be flushed after the formation of each result , in order to clear the carry registers at each 
node. A 30% speedup could be achieved if the multiplier were more fully pipelined. 

3 .3 Pxp14 

The improvements suggested by the Pxpl3 prototype have been built into a new enhanced 
memory chip (Pxpl4} , in fabrication at the time of writing. The chip contains 64 pixels, each with 
72 bits of memory. In 4-micron nMOS, active circuitry (excluding pad frame and wiring) is 7.5 x 
4.0 mm and contains about 33,000 transistors. Of this area, about 70% is devoted to memory, 20% 
to the binary-t ree circuitry, and 10% to the pixel ALU. With MOSIS's 3-micron fabrication, two 
modules (128 pixels) can be built inside a MOSIS-standard pad frame. 

The system built around this chip will be exp andable to 512 x 512 pixels with 72 bits/pixel (or it 
can display 1024 x 1024 pixels with 18 bits/pixel) . This system will be hosted by a high-performance 
workstation that will store and manipulate image data-bases, provide user interaction, and initially 
carry out part of the polygon transformation tasks in scene generation. (Later versions of the 
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system will perform t ransformations using special hardware , such as the Geometry Engine in the 
Silicon Graphics IRIS [Clark, 19821). 

The following paragraphs detail va rious design enhancements in the current memory chip. 

M ultiplier Pipelining 

Multiplier operations arc fully overlapped by includin g a small amount of addition al hardware 
for a p ipeline r egister. Figure 8 shows t he details of this scheme, which differs somewhat from 
tha t in convent ional pipelined mult ipliers [Lyon , 197GJ. The pipelining register is 'sticky ': when 
it receives a logic-1 it is locked into this state until a global clear is generated . Thus, a stream of 
1 's marches down the multiplier just behind the formation of par tial product s contributing t o the 
MSB of the result , and just ahead of th e LSB of the new constant coefficient. When the stream of 
1 's reach es the last st age , a clear is generated that simul taneou sly re-enables multiplication at all 
stages. 
M em ory D esign 

Pxp /4 uses a 4-transist or dynamic memory cell that has the useful proper ty of refreshing itself 
during a read op eration. Since each memory row is connect ed on ly t o its pixel ALU, no sp ecial 
sense amplifier is needed for read access ; simulat ions show th at th e memory operates faster (about 
20 M Hz) without one. 

The video output port of the pixel memory is implemented as a sin gle double-buffered r egist er 
per chip , t he Shadow Regist er , in which a copy of the current ly selected pixel's memory is built up 
sequentially. The scheme is shown in F igure 9. 

A pixel selec tor points at the p ixel (memory row) needed for the next scan-line and puts a copy 
of the data from each bit onto a one-bit bus during each read or write cycle. Simultaneously, the 
memory address decoder output is delayed and used t o load data from this bus into the element 
of the shadow register corresp onding to the selected memory bit. T hus, as each bit of memory is 
'visited ' during image generation , it is cop ied into the master half of the Shadow Register . At the 
end of a scan-line, the Video Controller unloads the master into the slave of the Shadow Register , 
where the data is available for output . The Shadow Register mechanism is much more space-efficient 
than a full dual-port ed memory. It requires some care, however , ir: d esign and in operation t o avoid 
data corruption due to synchronization failure and t o ensure that image-intensity bits are visited 
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Figure 9: VIdeo memory port Implemented u a Shadow Reglater. 

often enough to update the register once per scan-line. Neither of these problems is difficult to 
overcome in practice. 
Redundant Modules and Circuits 

Pxp/4 retains the Alive mechanism for module fault tolerance that was tested in Pxp/3 and 
adds circuitry to support redundant memory elements to make each module more robust . 

The chip contains one extra memory column. A redundant-column address register is added to 
the chip 's configuration register , so that the address of the column to be replaced can be scanned 
in during system initialization. 

Provision of a redundant row is somewhat more difficult , since one of the ALU-memory 
interfares must be re-connected to the redundant memory row. Re-connect ion cannot be readily 
implemented without undue loss in system speed , so instead we provide an entire extra pixel with 
ALU and complete sub-tree path . The 6 nodes of local tree above the redundant pixel are realized 
simply by building a full 20 stages of supertree. The configuration (address) registers in these 
stages contain the address of the redundant pixel, and are loaded with the rest of the address at 
initialization. Redundant row and column enables are also provided to tum the entire mechanism 
off. 

The redundant column circuit ry requires only about 1.4% of the total active circuit area and 
the rrdundant row about 5.3%. 

3.4 Buffered Pixel-Planes 

One drawback of our present system is that the full parallelism cannot be u t ilized subsequent 
to scan-conversion. During visibility and painting calculations, all pixels outside the currently 
processed primit ive are idle. 

We are investigating an alternative system design, called ' Duffered Pixel-Planes', that improves 
parallelism. A modified Image Generat ion Controller with accept/ reject circuitry and a FIFO is 
fully integrated onto a custom chip, and many copies are distributed across the system, each 
supervising a group of enhanced memory chips. The Translator sends bounding-box data for each 
primitive ahead of its coefficients and ins tructions. Each IGC accepts or rejects the current primitive 
based on the bounding box; if inside, coefficients and instructions are accepted and pushed into 
the FIFO for processing. 

We have simulated the behavior of such a system processing images of moderate complexity 
(up to 1000 polygons), and we predict approximately 5-fold speedup with modest (10-polygon) 
FIFO size. 



\ 
• 

4. Design Methodology 
4.1 Tools 

PIXEL-PLANES 12 

For the nMOS realization of our current chips, we use mask-level layout , layout analysis, and 
circuit simulat ion design tools distributed by the University of California at Berkeley. 

We have written inC the logic'-gate-lev'el simulators for the memory chip and for other system 
components. These simulators are used first to check the correctness of the logic design for the 
system, then to generate test vectors for switch-level simulation of the chip circuit ry. 

Most of the design of the custom chips was done by two designers working on a Digital 
Equipment VAX 11/750 minicomputer with two Lexidata 3700 color displays . 

The lack of well-integrated design tools that go smoothly from silicon design to board design is 
a serious impediment to our work. Board-level logic design and analysis are still done using paper 
and pencil, with considerable assistance from standard UNIX program-development tools . Boards 
are layed out with a graphic chip-layout editor and fabricated using MOSIS 's PC-board service. 

For some time we have been working on a CMOS version of the enhanced memory chip. Mask
level design of CMOS projects is unattractive for two reasons: First , the additional complexity 
of CMOS technology makes an already-difficult layout task much more tedious. Second, the 
fabrication technqlogy is developing rapidly, and it is not clear that scalable design rules for 
mask layout will be an effective way of tracking these advances. We have therefore been using 
(and assist ing in the development of) the VIVID• symbolic-layout design system [Rosenberg et 
al., 1985]. The system includes a hierarchical layout compactor that translates symbolic layout to 
mask with the help of a technology file that captures all relevant information about a particular 
fabrication process. In this way a given symbolic design can hope to survive considerable change 
in the target fabrication technology. 

4.Z Design Style 
Constm cting a full -scale, full-speed system is a much more complex task than building a small 

prototype. The principal lesson learned from our early prototype construction was the need for 
complete documentation and precise interface specifications. We have therefore adopted for all 
system components a design style whose clements are: 

( 1) The system is decomposed into modules following a restricted hierarchy, in which only leaf-cells 
are allpwed to contain circuit elements. The hierarchy is maintained in parallel in the physical 
domain (e .g., chip layout ) the logical domain (e.g. , logic schematics) , and the behavioral domain 
(e.g., simulators that model the logic) . Composit ion cells may contain only interconnection 
information (abuttment, for example, within a chip layout) and other cells. Leaf cells may 
contain only circuit elements (logic gates in the logical description; transistors, wires, contact 
cuts in the physical description) . 

(2) Borrowing from strongly-typed programming languages , we impose a strong-typing scheme 
on all signals in the system. To ensure that modules are 'correctly connected' (e.g., timing 
convent.ions and active-levels are observed) , only a few signal types are allowed for connection 
between modules. The typing scheme is based on non-overlapping mult i-phase clocks, and if 
applied carefully, avoids race condit ions in sequent ial circuits. The signal types are encoded in 
a suffix attached to every signal name, providing a powerful documentat ion aid. 

(3) Special hazards are involved where clocking convention (e.g. edge-triggered vs . level-sensitive 
latching) and implementation technology (TTL logic vs. custom MOS) changes, particularly 
at the chip I/ 0 pads. To help assure that this interface will work properly, we define its timing 
convent ions in a simple way, using two-sided timing constraints. 

(4) Every major module in the design is modeled by a functional simulator. The simulated modules 
are tested separately, then plugged together to check the correctness of interfaces and overall 

• VIVID is a trademark of the Microelectronics Center of North Carolina 
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operation of the simulated system. The simulators provide test vectors for chip simulation and 
testing. 

The signal-typing/timing schemes are similar to [Noice et al., 1982) and [Karplus, 1984). Other 
elements of the style were influenced by [Lattin et al., 1981; Stefik and Conway, 1982; Stefik et 
al., 1982], among other sources. 

4.3 Clocking Tec.hniques 
Our nMOS custom chips use a high-voltage clocking scheme ('hot clocks') suggested to us by 

[Seitz, 1982) and described in [Seitz et al., 1985). The main advantage of the technique is that 
n-enhancement transistors transmit a logic-HI without threshold drop and at much higher speed. 
In general, this clocking method produces layouts that are denser and much faster than conventional 
single-supply designs. 

In a system with many custom chips, it is extremely inconvenient to generate these clock signals 
off-chip at a non-standard voltage. We have therefore built on-chip clock drivers that perform level 
translation and single-to-2-phase conversion. A separate input pin , biased typically at 8 volts, 
powers only these circuits. We have successfully built and tested a number of such high-voltage 
drivers, and our current design charges 100 pf to 7 volts in about 10 nsec. 

The clock signals are produced in a single generator on the chip and distributed, so far as 
possible, continuously in metal wiring. For routing purposes, the clocks are second in importance 
only to Vdd and ground. For the inevitable cross-unders , we use ' low resistance wire' , essentially 
an extended buried contact whose sheet resistance we have measured at about 7-8 ohms/square . 

Level-sensitive register controls require qualified clocks that are generated in clocked, boot
strapped drivers [Joynson et al. , 1972). The design of these compact drivers is not difficult, and 
they can be made to generate qualified clocks that follow the primary clock signal with nearly zero 
delay. 

5. Pixel-Planes Algorit.hms 
In this section we briefly describes how polygonal images are processed in Pixel-planes, and we 

outline several new algorithms, more fully described in [Fuchs et al., 1985). The timing estimates 
in this section assume that the Pxpl4 chips are clocked at 10 MHz. 

Rendering smooth-shaded polygons requires scan conversion, hidden surface elimination , and 
shading calculations: 

Scan conversion is outlined in Figure 10. Processing begins by enabling all pixels in the 
display. Edges are encoded in linear equations of the form F(x, y) = Ax+ By+ C = 0, and the 
sign of F is tested at every pixel to determine visibility. Scan conversion leaves pixels outside 
the current polygon disabled; only those inside participate in further visibility and shading 
calculations. 

Hidden surface elimination can be performed using a depth-buffer algorithm in which the 
z-coordinate of a pixel is encoded in a set of coefficients A , B , C by the linear expression 
z = Ax + By + C. Each pixel stores a value of z for the closest polygon so far processed and 
compares this value with the incoming z. H the new z is closer, the current polygon is visible 
at this pixel, and it remains enabled for shading, updating its z-buffer. H the stored z is closer 
than the new z, the pixel is disabled during shading. 

Smooth shading is accomplished by computing a set of coefficients for each of R, G, and D, so 
that the color-intensity at each pixel is approximated by F(x,y) . Gouraud-like smooth shading 
can be carried out by painting each multi-sided polygon as a series of triangles (scan-conversion 
and hidden surface elimination, however, need only be done once for each polygon) . 

Polygon processing time depends on the number of edges and the number of bits needed 
to represent the function F(x, y) for each operation. Approximately 30,000 4-sided polygons of 
arbitrary shape and orientation can be processed per second, using the steps outlined above. 
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Figure 10: Scan-covertlng polygon• ualng linear expreaalona. 

Shadows are important depth cues in interactive systems, and we have developed a method , 
similar to [Brotman and Dadler , 1984], for casting shadows from arbitrary light sources using using 
shadow volumes [Crow, 1977]. For each polygon in the image, the set of visible pixels that lie in 
the frustum of the p olygon 's cast shadow are determined, and the color intensity of these pixels 
is diminished by an appropriate factor . Shadows are post-processed after a non-shadowed polygon 
image has been generated . The shadows for approximately 78,000 polygons can be computed per 
second. 

Filled circles can be rendered rapidly in Pixel-planes by treating a circle as a polygon with 
one edge . The method separates the equation of a circle into a linear part that differs for each 
circle size and position, and a quadrat ic part that is the same for all circles. The quadratic 
part is pre-computed and its distinct values are loaded into every pixel at system initialization. 
Cirrks are process<'d by encoding center-position and radius in coefficients A, D, C and adding 
the linear exprcs::~ ion t o the stored quadratic term at each pixel. This method can readily be 
extended to render the other conic sect ions , such as ellipses. Spheres can be approximated by a 
quadratic surface, depth-sorted using a Z-buffer , and highlighted from an arbitrary light source. 
Approximately 34,000 spheres can be processed per second. 

Texture mapping can be performed by using the linear expression evaluator to compute a 
texture plane address at every pixel. The appropriate color value for a pixel is then looked up in a 
texture table, transmitted entry by ent ry to the Smart Frame Buffer . 

Anti-aliasing may be accomplished by one of two methods. The first , similar to ' super
sampling', blends a newly computed image with a previously con;tputed image in a series of steps 
that successively refine the image. To support rapid interaction, the image is only refined when 
stationary. A second approach uses a method similar to that used on the Evans and Sutherland 
CT -5 real-time image generation system [Schumacker, 1980]. This method assumes that a visibility 
ordering of the polygons has already taken place, and uses a sub-pixel coverage mask to compute 
the anti-aliased image. 

Transparency effects can be produced using the sub-pixel coverage mask for successive refine
ment , or by disabling patterns of pixels (e.g. a checkerboard) during polygon processing. 

Adaptive Histogram Equalization (AHE) [Pizer et al., 1984] is a powerful image processing 
technique used for grey level assignment and contrast enhancement of Computed Tomographic 
(CT) images. A local histogr am is computed for every pixel in the image, and then used to 
compute a new grey level assignment for that pixel. For a 512 x 512 image, this method requires 
about 5 minutes of computation on a VAX 11/ 780, and is therefore too inefficient for most uses. 
The parallel processing power of Pixel-planes can be used to compute simultaneously the grey 
level assignment for each pixel in the image, without the need for histogram calculation. A rank 
counter , maintained in a portion of each pixel's memory, can be incremented using the pixel ALU. 
The intensity of a given pixel is broadcast and compared , in parallel, to the intensity of all pixels 
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that are within a local region. The rank counter is incremented at all pixels in the local region 
whose intensity is greater than the given pixel. After all pixels have been processed, the rank 
counter values arc scaled and d isplayed. We estimate a 512 x 512 image will require .approximately 
4 seconds to compute on Pixel-planes. 

6. Comparison with Other Architectures 

We divide alternative VLSI-based architectures for graphics into two classes (as outlined in 
[Abram and Fuchs, 19841) : those that divide the image plane into sub-planes, with a processor 
for each subdivision, and those that divide the object database, assigning a processor to each 
subdivision. The Pixel-planes system is an example of the former, and we therefore compare it 
with two other systems of this type. 

6.1 Architectures for Image-plane Subdivision 

Several groups (!Fuchs and Johnson, 1979]; [Clark and Hannah, 1980]; [Gupta et al. , 1981]) 
have proposed systems that make more effective use of commercial RAM chips than conventional 
frame buffers; we refer to this as the interlaced approach. In [Clark and Hannah, 1980], the RAM's 
are interlaced so that on any 8 x 8 area of the screen, one pixel comes from each of the RAM's; 
each memory contains every eighth pixel in every eighth row. The scheme uses two layers of special 
processors organized in columns and rows, with a row-processor in charge of each RAM chip (or 
group of RAM chips when more than 1 bit/ pixel). An entire 8 x 8 patch on the screen can be 
accessed with a single memory reference by the 64 row processors, so a polygon (or other primitive) 
roughly the size of a patch , or larger, can be processed with considerable parallelism. 

A major advantage of the interlaced approach is that it uses high-density commercial RAMs 
and yet achieves performance greatly improved over conventional frame buffers with relatively 
few custom chips. This design is hampered, however, by the bandwidth limitations imposed by 
separating memories and processors onto separate chips. 

Another recent approach, described in [Demetrescu , 1985], employs 'Scan-Line Addressable 
Memories' (SLAM's). A system with 1024 x 1024 one-bit pixels is organized in 16 rows, each with 
a Scan-Line Processor in charge of 4 SLAM chips. Each of these units contains and cont rols all 
of the pixels in 64 successive scan-lines. Each SLAM chip contains a conventional RAM array, 
organized as 64 rows of 256 one-bit pixels, augmented with an array of very simple processors that 
operate in parallel on all pixels in a row. In one cycle of operation, all pixels in 16 scan lines can 
be accessed. The Scan-Line Processors provide buffering of graphics primitives, so that very high 
parallelism can be achieved . 

The system-level implementation of a SLAM-based display should be very clean . In contrast 
to the interlaced design, high-bandwidth memory-processor communication wiring is completely 
encapsulated in the SLAM chips. Commands and data are broadcast from each Scan-Line Processor 
to its SLAM's over a low-bandwidth bus. The SLAM design solves the display-refresh problem 
without interrupting image processing (by including a display shift register on the SLAM chip). 
These are the principal features common to the SLAM and Pixel-planes approaches . 

6.Z Comparison with Pixel-planes 

For today 's high-performance workstations, where the display requires one or a few bit-planes 
and handles (mainly) multiple windows with text, lines, and flat-shaded polygons, the SLAM 
approach is ext remely attractive. For such applications, it appears to be considerably faster 
than either the interlaced or Pixel-planes designs and is several orders of magnitude faster than 
conventional frame buffers . The cost of the approach, like ours , is the need to use custom-designed 
memory chips. The processors on the SLAM chip are extremely simple and appear to require very 
little area, however, perhaps as little as 1/10 that of our processors. 

The Pixel-planes system is tar geted at applications more demanding than the displays in current 
workstations, such as medical display and imaging, molecular modeling, mechanical design systems, 
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and flight and navigational simulators. These applications require interaction with 3D images 
needing visibility determination, smooth shading, shadows , and textures; images with perhaps 
thousands of primitives and significant depth complexity must be updated at frame rates. 

Methods for improving perceived image quality necessarily rely on storing additional informa
tion at each pixel. Clearly, the most effective means of improving performance is accessing and 
processing this data in parallel, closely associating a large amount of pixel memory with a pixel 
processor. The Pixel-planes design provides the power of a processor per pixel, at relatively modest 
cost in silicon area, and a very general method for computing images. 

The interlaced approach cannot grow gracefully in the dimension of bits/pixel because of chip 
1/0 limitations. In the SLAM design, one alternative for growth in this direction is multiple 
banks of SLAM, one for each bit plane. To expand such a system to the size accommodated by 
the current Pixel-planes chip would entail a copy of the processor for each of 72 bit-planes, an 
intolerable increase in silicon area. The other alternative is using a column in the SLAM to hold 
all bits of a pixel, then bit-serially processing data; this alternative is similar to our approach , but 
it fails to provide a very general image-computation method. 

For applications that require accessing large amounts of memory per pixel, our system should 
be denser and faster than either of the other approaches. In. effect, we have already paid the price of 
accessing many bits/pixel: bit-serial data access and a more general (and costly) method of display 
refresh. 
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