= AOATGE Cof) o TLes

§IV.3.4 -- IGC Microcode Assembler pg. 1

IV.3.4 THE IGC MICROCODE ASSEMBLER

The IGC is programmed using the IGC microcode asembler asmppS. AsmppS5 processes
an input file of IGC microcode source, described below, and outputs three C header files.
The first, igc_microcode.h, defines the array static int igc_microcode[], which contains
32-bit words comprising the data for the microcde store. The second, igc_opcodes.h,
contains macro definitions which generate opcodes (I words) and supplementary opcodes
(P words) for specific instructions. The third, igc_commands.h, contains macros built on
top of the igc_opcodes.h macros, which allow the user to specify an IGC command with a
single macro. The file igc_microcode.h is included in application code which initializes the
IGC; igc_commands.h and igc_opcodes.h are included in application code which
generates IGC commands.

IV.3.4 — 1 Types of Instructions.
IGC instructions may be divided into 3 basic types:

1) those which use neither the quadratic expression evaluator (QEE) nor a scalar value
2) those which use the C coefficient as a integer scalar value
3) those which use the QEE result Q(x,y), in one of several ways:

a fixed number of bits of Q(x,y) is used (regardless of its magnitude)

only the sign-bit of Q(x,y) is used

all of Q(x,y), including the sign-bit, is used

all of Q(x,y), including a fixed minimum number of bits, and the sign-bit are used

Specific instances of QEE instructions may use the QEE in one of the following 3 modes:

constant mode Qix,y)=C

linear mode Qx,y)=Ax+By+C

quadratic mode Q(x,y) =Dx2 + Exy + Fy2 + Ax + By + C
Pixel-planes 5 System Documentation Chapter IV.3 -- Image Generation Controller

Rev 1.2 jge Thu, Jul 19, 1990

§IV.3.4 -- IGC Microcode Assembler pg. 2

IV.3.4 — 2 Input File for Microcode Assembler.

The input file to asmpp5 consists of specifications of (1) templates for computing P and I
word opcodes for IGC instructions, and (2) microcode words. Lines beginning with "#"
define opcodes, and all other lines, except comments, define microcode words, with a 1-1
correspondence between input lines and microcode store locations. Any portion of a line
lying to the right of a semi-colon (';") (including lines beginning with a semi-colon) is
treated as a comment. The opcode specifications and microcode word specifications are
interlaced, with the placement of an opcode specification line relative to the microcode word
specification lines defining the entry point for the instruction. Multiple opcode
specifications may use the same entry point.

Opcode specification.
Opcode lines must begin with the special character '#. They are of the form:

#NEM(argl, arg2, ...) [DstAddr:dst] [SrcAddr:src] [AuxAddr:aux] [LpCntl:lpcntl] [LpCnt2:1pent2]
[FNI:fni] [NoLSB] [MBI] [SCA] [FBITS:fb]

NEM is a mnemonic name for the instruction, and ‘'argl’, ‘arg2’, etc. are a set of optional
mnemonics for instruction arguments. The remaining fields are also optional. There must
be no spaces in the list argl, arg2,

‘DstAddr', 'SrcAddr, and 'AuxAddr' specify starting values to be used for the three 8-bit
pixel-memory address counters. Thus 3 separate pixel-memory operands (3 sequences of
pixel-memory addresses) can be used in an instruction.

'LpCntl' and 'LpCnt2' are starting values to be used for the two 7-bit loop counters used
by the microcode sequencer. ‘LpCntl' may not be specified for an instruction which uses
the QEE's; its value is implicitly equal to FNI - 1 (see description of FNI below).

The 'FINI' token indicates that the instruction is one which uses the quadratic expression
evaluator output (QEE result); FNI is omitted for an instruction which does not use the
QEE. The FNI argument should be set to 1 for instructions which only use the sign-bit of
the QEE result, and to 2 for instructions which use the entire QEE result including sign-bit;
for instructions which require some minimum fixed number of bits of the QEE result, the
argument to FNI specifies this number of bits.

Pixel-planes 5 System Documentation Chapter IV.3 -- Image Generation Controller
Rev 1.2 jge Thu, Jul 19, 1990

§IV.34 -- IGC Miérocode Assembler pg. 3

The token 'NoLSB' specifies that the instruction does not check for a TRR token
representing the LSB of the QEE result; it is used for instructions which use only the sign-
bit of the QEE result.

The token 'MBI' specifies that the instruction checks for a TRR token representing the
sign-bit of the QEE result; it is used for any of the types of QEE instructions which use the
sign-bit.

Together, the FNI, NoLSB, and FNI tokens specify how the QEE result is to be used for a
specific instruction (see Section IV.3.4-1 above). However, note that none of these QEE-
related tokens are related to the QEE mode (constant, linear, or quadratic), which is
specified for separate instances of any instruction which uses the QEE, by the user or by a
macro in igc_commands.h.

The presence of the 'SCA' token indicates that the instruction is one which uses a scalar
coefficient, the C coefficient value interpreted as a signed integer. 'FNI' and 'SCA' are
mutually exclusive, that is, no instruction can use both the QEE's and a scalar value.

‘ 'FBITS:fb' is used to change the value for the number of fractional bits of precision,
FBITS; it may be specified only in instructions which do not use the QEE result.

FNI and LpCntl are mutually exclusive. If FNI is specified, the value for LpCntl is
implicitly equal to FNI - 1. If this setting for LpCntl is unacceptable, 2 things can be done:
(1) LpCnt2 can be used instead, if both loop counters are not needed for the instruction, or
(2) the microcode can count LpCnt1 down explicitly, if the required starting count for Loop
Counter 1 is less than the desired value of FNI - 1.

Pixel-planes S System Documentation Chapter IV.3 -- Image Generation Controller
Rev 1.2 jge Thu, Jul 19, 1990

§IV.3.4 -- IGC Microcode Assembler pg. 4

The arguments 'dst’, 'src', 'aux’, ‘Ipcntl, 'lpcnt2’, 'fni’, and 'fb’' must be constant
expressions involving the 'args’ which are interpretable by the C pre-processor, and should
use parentheses liberally to avoid incorrect evaluation if the 'args' are complex expressions
in invocations of the instructions. Valid ranges for the actual arguments passed in the
opcode are as follows:

FIELD ARGUMENT MIN MAX
DstAddr dst 0 255
SrcAddr sTC 0 255
AuxAddr aux 0 255

LpCntl Ipentl 0 128 §
LpCnt2 Ipcnt2 0 128 ¥

FNI fni 1+F (75-FBITS)
FBITS fb 0 30

+ range is 0-127 or 1-128 for any given instruction, depending on the how the microcode is written

t+ care must be taken if this value is set to 1; see comments under "General Programming Considerations”

Since the specification for the arguments generally are expressions involving the ‘args', the
assembler cannot do error checking; rather, the code generating IGC commands must
insure that valid values will result. Failure to detect errors can result in the IGC hanging.

For each opcode specification line, asmpp5 places a macro definition in the output file
igc_opcodes.h of the form

I_NAME(args) ...

This macro fully defines all the fields of the I register opcode except for the QEEMode and
CoefMode fields. The QEEMode field specifies which QEE mode (constant, linear, or
quadratic) is to be used; in the macro, it is set to 11 if the instruction uses the QEE's and 00
otherwise. These settings may be changed if it is desired to use the QEE's in constant or
linear mode, either manually or by using the macros in igc_commands.h; for a non-QEE
instruction, they must be left 0's. The CoefMode field is set to 00, and must be specified
by the user; this field is ignored by the IGC, but rather is used to specify the number and
ordering of coefficient arguments in an instruction stream for an off-chip "stream parser".

Pixel-planes 5 System Documentation Chapter IV.3 -- Image Generation Controller
Rev 1.2 jge Thu, Jul 19, 1990

§1V.3.4 - IGC Microcode Assembler pg. S

' If any of the tokens LpCnt2, SrcAddr, or AuxAddr are used, bit 31 of the opcode is set by
the I_NAME macro, and a supplementary opcode (the P register) is required. For this
supplementary opcode, asmpp5 generates a second macro of the form

P_NAME(args) ...

which defines the entire P register supplementary opcode. Bit 31 also is ignored by the
IGC; it tells the off-chip "stream parser"” that the supplementary opcode is expected in its
instruction stream.

Microcode word specification.

All other lines in the input file, except blank lines and comment lines (beginning with a
semicolon ";") are specifications of microcode words, one line to a microcode word. A
microcode specification lines contains a number of optional but inter-dependent fields.They
are divided into several groups:

(1) sequencer control - control the sequencer branching
(2) pixel-memory control (address and read/write)

. (3) quadratic expression evaluator function
(4) pixel-ALU instruction (including direct register control, configuration and external
operations) o
Sequencer control is specified using one of the following tokens: ~+ \‘_\'C s 'Q 4*: :\,r
\’rc AS? uv?se!;
done terminate this instruction (goto idle, or begin next instruction) \ T a *; S~
br:n unconditionally branch to offset n (positive or negative)
TRR:n increment if TRR set, offset branch otherwise 100 , f)yf (
TC1:n increment if Loop Counter 1 zero, offset branch otherwise
TC1B:n increment if Loop Counter 1 non-zero, offset branch otherwise
TC2:n increment if Loop Counter 2 zero, offset branch otherwise
ST1l:n increment if STIHLPR input is High, offset branch otherwise
ST2:n increment if ST2LLPR input is Low, offset branch otherwise
<default> unconditionally increment (go to next address)

If none of these tokens is specified, the default sequencer control, an unconditional
increment, is used.

Pixel-planes 5 System Documentation Chapter IV.3 -- Image Generation Controller
Rev 1.2 jge Thu, Jul 19, 1990

§IV.3.4 - IGC Microcode Assembler pg. 6

The 'done’ token is special. It specifies termination of the instruction; if another instruction
is pending, control will jump to the starting microcode address for that instruction,
otherwise control branches to 0, the idle address.
Two additional optional tokens control the loop counters (in module LoopCount):

cntl decrement loop counter 1 (ignored if 'done’ is also specified)

cnt2 decrement loop counter 2 (ignored if 'done’ is also specified)

Control of pixel-memory address is by the following tokens:

dst use Destination address counter (default)

dst+ use Destination address counter, then increment it
dst- use Destination address counter, then decrement it
src use Source address counter

src+ use Source address counter, then increment it

src- use Source address counter, then decrement it
aux-+ use Auxiliary address counter, then increment it
aux use Auxiliary address counter

The default for pixel-memory address control is 'dst'. The token 'aux-' (auxiliary address

counter 1 with decrement) is not defined. If any increment or decrement token is specified

in a microcode word containing a 'done’ specification, the increment or decrement will not
occur since the counters will be loaded with the respective starting addresses from the next
instruction.

Control of pixel-memory read/write is by the token "WRT". If it is not given, the specified
pixel-memory address is read on this cycle. If it is given, the value on the 'sum’ output of
the pixel-ALU is written to the specified pixel-memory location provided either (1) the pixel
-ALU Enable register is set, or (2) the ALU instruction specified FrcEn on the previous
microcycle (see below). Note that pixel-memory is always read, even on a write cycle.

Pixel-planes 5 System Documentation Chapter IV.3 -- Image Generation Controller
Rev 1.2 jge Thu, Jul 19, 1990

§IV.3.4 -- IGC Microcode Assembler pg. 7

’ Quadratic expression evaluator function is controlled by two optional but mutually
exclusive tokens:

TrH do not shift the QEE and coefficient shifters on this cycle
TrF unconditionally shift the QEE and coefficient shifters on this cycle

The default is to conditionally shift the QEE and coefficient shifters on a given cycle, that
is, assert ShiftHSP1 if and only if a TRR token is not being asserted on the "QEE result
ready" signal TRRHSP1.

The pixel-ALU instruction is specified by several sets of tokens. To understand use of
these tokens, recall that the EMC's pixel-ALU is based on a one-bit full adder, with input
multiplexers on the 'a’, 'b', and 'c' inputs. The 'sum’ output can feed back to the 'a’ input,
and also becomes the 'write data’ bit for pixel-memory; the ‘carry’ output can be saved in
either the Enable register (which qualifies writes into pixel-memory) or the Carry register.
Both of these registers also feed back to the adder inputs.

' The Carry and Enable registers are controlled using these optional but mutually esclusive
tokens:
LdEn load the Carry register with the 'carry’ output of the pixel-ALU on

this cycle (not previous cycle); default is to save the old Carry

CRY load the Enable register with the ‘carry’ output of the pixel-ALU on
this clock cycle; default is to save the old Enable

FrcEn save the Enable and Carry register contents, but enable writes to
pixel-memory during the next cycle (WRT must also be specified),
regardless of the contents of the Enable register

The inputs to the adder are specified using the complex token:

alu:a+b+c

where 'a', 'b', and 'c'represent the corresponding inputs to the pixel-ALU.

. Pixel-planes 5 System Documentation Chapter IV.3 -- Image Generation Controller
Rev 1.2 jge Thu, Jul 19, 1990

§1V.3.4 -- IGC Microcode Assembler pg. 8

Selections for 'a' are:

1 a constant 1

0 a constant 0

sum the 'sum'’ output of the adder from the previous cycle

sumbar the inverse of the 'sum' output

tree the local value of the quadratic expression evaluator (QEE) result
treebar the inverse of the QEE result

sumtree the logical-AND of the QEE result and the adder 'sum' output
sumtreebar the logical-NAND of the QEE result and the adder 'sum' output

Selections for 'b' are:

1 a constant 1

0 a constant 0

enable the previous cycle contents of the Enable register

enablebar the inverse of the Enable register

rddat the value read from pixel-memory on the previous cycle

rddatbar the inverse of the value read from pixel-memory

ear the logical-AND of the Enable register and the pixel-memory read
earbar the logical-NAND of the Enable register and the pixel-memory read

Selections for 'c' are:

1 a constant 1

0 a constant 0

cry the previous cycle contents of the Carry register

crybar the inverse of the previous cycle contents of the Carry register

The default is 'alu:sum+0+0'.

Any specification of the form 'alu:a+1+0' is automatically encoded as the functionally
equivalent form 'alu:a+0+1'. The configuration of the ALU control bits which would be
specified by the 'alu:a+1+0' form is said to be redundant, since identical function is

Pixel-planes 5 System Documentation Chapter IV.3 -- Image Generation Controller

Rev 1.2 jge Thu, Jul 19, 1990

§IV.3.4 -- IGC Microcode Assembler pg. 9

specified by the 'alu:a+0+1' form.

This redundant configuration is used for special functions, and is invoked by using, instead
of the form 'alu:a+b+c', one of the tokens:

alu:extN, for N = 0,1,...,5
alu:cfg
alu:cfgbar.

These forms set the 'b" and 'c’ inputs to the redundant form (b=1, c=0), and the 'a’ inputs
are encoded as

N = 4*AGtsTHSP1 + 2*AGtsSHSP1 + ACmpHSP1

with N=6 and N=7 corresponding to 'cfg' and 'cfgbar' respectively. For the 'extN' form,
the ExtOpNHSPR output of the IGC is asserted for one cycle and is used to specify one of
6 external commands; these are designed for controlling off-chip hardware on the Renderer
board.

The setting of the ALU control bits specified by 'cfg' and 'cfgbar’ is reserved for activation
of the configuration registers on the EMC's.

The forms which cause ACmpHSP1 to be asserted (‘extl’, 'ext3', 'ext5', and 'cfgbar’)
enable the paired address lines. This means that instead of the IGC outputs
AddrL<0:7>HSPR and AddrH<0:7>HSPR being identical, AddrH<0:7>HSPR
are the inverses of AddrL<0:7>HSPR. Thus each EMC gets a different pixel-memory
address.

It is not intended that the pixel-ALU be used in instructions which use these special
redundant forms, since the values of the ALU control signals are somewhat arbitrarily
defined; however, the pixel-ALU could be used on these cycles if the desired control
signals could be resolved with the ones needed to implement a specific external operation or
configuration operation.

Pixel-planes 5 System Documentation Chapter I'V.3 -- Image Generation Controller
Rev 1.2 jge Thu, Jul 19, 1990

§IV.3.4 -- IGC Microcode Assembler pg. 10

One additional token
dir

may be specified; this token enables the direct-to-ALU register, used for the 'scalar’ type
instruction which uses the C coefficient as an integer value. This feature is used to pass
integer data directly to the pixel-ALU's without using the QEE. A 32-bit integer value is
written to the C register with an instruction. When the 'dir' token is used, the output of the
direct-to-ALU register (or its complement) defines the ACmp output of the IGC, and the
direct-to-ALU register is shifted to the right, so that the next most significant bit of the C
coefficient is at the output. The complement of the direct-to-ALU value is used if the
Sequencer output ACmpHSP1 is asserted; this occurs if the ALU token, contains the
'bar’ suffix, either in the 'alu:ext*bar' or ‘alu:cfgbar’ forms, or in the 'a’ portion of the

4
‘alu:a+b+c’ form. .ol -\+K+)“ 4
L ALY ﬁw
\ ¢ ! s¢
IV.3.4 — 3 General programming considerations. f Q‘ ’sk\"‘\ wit
US(/“\ \\n‘

Some important considerations when writing microcode for the IGC:
Microcode word 0 must consist of the single token 'done’'.

Loop counters. When implementing a loop using the token TC1:N (or TC2:N), where
N is zero or negative, some microcode word in the loop must contain the token ‘cntl’ (or
‘cnt2'); otherwise, the IGC will hang in the loop, unless the Loop Counter was at 0 upon
entering the loop.

It makes no sense to specify either of the loop counter tokens ‘cntl’ or ‘cnt2' in a 'done’
microcode word, since the executing the ‘done' word ends the instruction and causes the
loop counters to be loaded with the initial count values for the next instruction. If either
‘cntl’ or ‘cnt2’ is specified in the same microcode word as 'done’, asmppS prints a
warning and ignores the ‘cnt' token.

The loop counts may also be used as flags, to control conditional execution of portions of
the microcode sequence. That is, the same microcode section may be used to implement
more than one instruction, by specifying zero or non-zero values for LpCntl or LpCnt2 in
the opcode specification, and using 'TC1', 'TC2', and 'br’ branches. For example:

Pixel-planes 5 System Documentation Chapter IV.3 -- Image Generation Controller
Rev 1.2 jge Thu, Jul 19, 1990

§IV.3.4 -- IGC Microcode Assembler pg. 11

#INSTRUCTION_A() LpCntl:1
#INSTRUCTION_B() LpCntl:0

TC1:2 <other microcode tokens> ; executed for both instructions
br:2 <other microcode tokens> ; exceuted only for instruction B
<microcode tokens> ; executed only for instruction A
<microcode tokens> ; executed for both instructions

Pixel-memory address counters. It makes no sense to specify any of the post-
decrement or post-increment pixel-memory address tokens in a 'done' microcode word,
since the executing the 'done’ word ends the instruction and causes the address counters to
be loaded with the pixel-memory addresses for the next instruction. If any post-increment
of post-decrement of pixel-memory address is specified in the same microcode word as
'done’, asmpp$ prints a warning and ignores the post-increment or post-decrement.

Control of pixel-ALUs. When none of the pixel-ALU control tokens ‘alu:', 'LdEn’, or
'‘CRY" are specified for a microcode word, the pixel-ALU's are effectively in a "no-op"
state, since the Carry and Enable registers are both saved, and the Sum register is re-cycled
(since the default 'alu’ setting is 'alu:sum+0+0").

TRR Tokens in QEE instructions. Every instruction which uses the QEE will cause a
TRR token to be generated when the LSB of the tree result reaches the pixel-ALU, unless
NoLSB is specified, and if MBI is specified, another TRR token will be generated when
the sign-bit of the QEE result reaches the pixel-ALU. It is critical that the instruction test for
the corrrect number of TRR tokens (using the TRR:N sequencer control).The TRR test
must be used once for a QEE instruction which specifies neither MBI nor NoLSB, or
which specifies both MBI and NoLSB, and twice for an instruction which specifies MBI
but not NoLSB. It is non-sensical for an instruction to specify NoLSB but not MBI, since
no token at all would be generated, so the sequencer cannot be synchronized with the QEE.
Instructions which do not use the QEE result must never test for TRR tokens.

Setting FNI for QEE instructions. The setting of the FNI field in a QEE instruction
which uses the sign-bit is critical. It must always be at least 1; however, if FNI=1, and all

the coefficients are zero or out-of-range, then the two TRR tokens will a on V0
successive shift cycles, and the sign-bit tokeq ig i is o for instructions be Cavst
which generate both TRR tokens, the minimum for FNI generally should be 2. e is
\hal uq Q
AJ%""\ «A“‘
Pixel-planes 5 System Documentation Chapter IV.3 -- Image Generation Controller

Rev 1.2 jge Thu, Jul 19, 1990

§IV.3.4 -- IGC Microcode Assembler pg. 12

QEE control tokens. Any loop which contains the TRR:N test must also contain a TrF
("tree force") token. However, in other situations, care must be used when specifying TrF.
It is important to realize that when a TRR token appears, that the token will remain for only
one shift clock cycle (cycle for which the QEE operates). Normally, the QEE will halt when
a token appears, and the token will remain; however, if TrF is asserted the token will
disappear after one cycle, and the token will probably be missed; in particular, the
microcode word which specifies ALU controls, etc for the clock cycle when the MSB of
the tree result (or the last bit of the tree result to be used) is at the ALU, must not have TrF
set. TRRHSP1 is asserted 2 clock cycles prior to the cycle at which the LSB of the integer
part of the tree result appears at the pixel-ALU, and, on an MBI instruction, it is asserted
again 1 clock cycle prior to the cycle at which the MSB (sign-bit) of the QEE result appears
at the pixel-ALU. If FBITS = 0, the LSB of the whole part of the tree result can be just 2
clock cycles behind the MSB of the previous tree result. Thus, the two tokens, representing
the MSB of one instruction and the LSB of the next, can appear on successive shift cycles.
(This is seen in the microcode for the 'LOAD' instruction, in which neither of the last two
microcode words have TrF specified. If the next to the last word had TrF specified (rather
than the default "conditional treestep"), and if FBITS=0, then TRRHSP1 could be asserted
on the clock cycle on which the most significant bit of the tree result to be used is at the
input to the ALU, which is under the control of the next to last microcode word, Shift
would not be inhibited, and the IGC would hang.) In general, TrF should never be asserted
except when the TRR:N sequencer control is used. In general, TrF and TrH should be used
only for instructions which use the QEE; the default conditional treestep should be used for
other instructions.

Using multiple conditional branch conditions. The following events may be used
to control conditional branches in an instruction.

(a) occurence of TRR token marking LSB of QEE result

(b) LoopCounter 1 reaching zero

(c) Loop Counter 2 reaching zero

(d) occurence of TRR token marking sign-bit of QEE result

Any instruction that generates more than one of these events must insure that they occur in
a known sequence, since only one can be tested for on a given microcycle; it is

recommended that the order of enumeration above be used.

Example: An instruction might munge the entire QEE result (including sign-bit) with an

Pixel-planes 5 System Documentation : Chapter I'V.3 -- Image Generation Controller
Rev 1.2 jge Thu, Jul 19, 1990

§IV.3.4 -- IGC Microcode Assembler pg. 13

' operand in pixel-memory; this instruction would be the type that uses the entire QEE result,
including a fixed minimum number of bits (equal to the length of the pixel memory
operand), plus the sign-bit. A loop might be used perform the QEE/memory operation, and
when this loop counts out the memory input to pixel-ALU would be set to 0 and the
computation proceed until the sign-bit of the QEE result appears. FNI must be selected to
insure that the TRR token marking the sign-bit occurs after the loop is exited; so FNI
would probably be set to 2 more than the length of the pixel-memory operand.

Pixel-planes 5 System Documentation Chapter IV.3 -- Image Generation Controller
Rev 1.2 jge Thu, Jul 19, 1990

§IV.3.4 -- IGC Microcode Assembler pg. 14

IV.3.5 IGC FUNCTIONAL SIMULATOR

The simulator for the IGC is IGCtst. It consists of a main routine, which simulates the
Stream Parser, and calls the procedure /GC, which exercises an instance of struct
IGCtype.

Each line of input represents one input word and contains 2 fields specified as follows:

(1) the number of clock cycles to wait in between asserting WrEn
(2) a 32 bit integer representing the data inputs D<0:31>HTPR (DO is LSB)

Since the main routine models the Stream Parser, no register address information is given
in the input stream.

Output is placed on standard output and consists of lines of O's and 1's representing the
IGC outputs, including the EMC control signals, as well as some additional diagnostic and
status signals. The form of this output is compatible with the input format of the simulator
for an array of EMC's, emcs.

Normally, output is not produced until FBITS is modified (a P register write occurs with
D30 = 1); this suppresses output during the initial microcode loading sequence. However,
if any command line argument is specified, /GCtst produces output on all cycles.

IGCtst normally is used with the preprocessor prep. Prep is compiled with the include
files igc_commands.h, igc_opcodes.h and igc_microcode.h, which are generated by the
IGC microcode asembler, asmpp35. First, prep sends input to IGCtst to load the

microcode store, and sends an FB_FBITS command to set the number of fractional bits for
the fixed-point bit-streams to a default value of 12. Then prep reads lines from standard
input, one IGC instruction per line, generates the correct opcodes (and supplementary
opcodes) from the macros in igc_microcode.h, sets the QEE mode and stream parser
control bits, and sends the correct stream of command data to /GCtst via standard output.

Each input line to prep consists of an IGC_ macro (as described in Section I11.4.2.3.1).
The pointer (first argument of each IGC macro) should be 'p'.

Pixel-planes 5 System Documentation Chapter IV.3 -- Image Generation Controller
Rev 1.2 jge Thu, Jul 19, 1990

