-—

& MAOD o TS e S

9 IIL.4.1. RENDERER FUNCTIONAL DESCRIPTION

A Renderer occupies one full-size board, with two ports on the Ring.

Each Renderer contains an array of 64 enhanced memory chips (EMC's), an array of 64
MegaBit Video-RAM's (VRAM's), and several controllers. The EMC's form an array of 1282
(16,384) bit-serial pixel processing elements, which operate in Single-Instruction/Multiple
DataStream (SIMD) fashion. Each pixel processor consists of a bit-serial pixel-ALU operating
at 40 MHz, 208 bits of local memory, and a connection to a distributed quadratic expression
evaluator (QEE) which supplies a local value of the bi-quadratic expression Q(x,y) = Dx2 +
Exy + Fy2 + Ax + By + C bit-serially at 40 MHz. In typical system operation, these 1282
processing elements are mapped onto a 128 x 128 pixel region on the display, one processing
element per pixel, with the local values of Q(x,y) corresponding to a processing element's x,y
pixel address. The pixel-ALU's operate on the Q(x,y) data from the QEE and pixel-memory,
storing their results back into pixel-memory. This array of pixel processors, also known as
enhanced memory, is key to Pixel-planes' unique power. However, although we will refer to
the processing elements as pixel processors, there may not always be a one-one
correspondence between processors and display pixels; in fact, the pixel processors may
sometimes contain data totally unrelated to pixel values, and the EMC's may be configured in a
‘ different way, so that Q(x,y) is computed over a different set of x,y values.

The array of pixel processors is tightly coupled to a Backing Store composed of video-RAM
chips. The Backing Store provides additional memory, organized as 128 32-bit registers per
pixel processor; that is, there are 128 sectors of Backing Store, each sector arranged as a 128
x 128 array of 32-bit values. The total size of a Renderer's backing store is equal to 1283
words = 221 words = 2 MegaWords = 8 MegaBytes. Each sector contains 16,384 words.

The function of a Renderer can be divided into 7 types of operations:

1) instructions are executed bit-serially in the 1282 SIMD array of pixel processors
2) data is transferred between pixel processors and sectors of Backing Store
3) data is received from other devices on the Ring and written into Backing Store
4) data from Backing Store is sent to other Ring devices
5) status messages are generated (in response to incoming requests)
6) error messages are sent to the Host Interface, if an error occurs

.7) two semaphores are P'ed and V'ed, for instruction stream synchronization

The Renderer has two ports on the Ring: the Image Generation Controller (IGC) Port and the

”

Pixel-planes 5 System Documentation Chapter III.4 Renderer
Rev 3.4 jge Mon, Feb 18, 1991

§III.4 — Renderer pg. 2

Backing Store (BS) Port. Each port processes a stream of commands. The IGC Port receives
SIMD instructions for the pixel processors, and commands to transfer data between the pixel
processors and backing store. The Backing Store Port receives messages containing data from
other Ring devices to be written into backing store, and messages which cause backing store
data to be sent to other Ring devices.

Both ports also receive commands to control a pair of hardware semaphores, and commands to
send status messages; the semaphores and/or outgoing status messages can be used to
synchronize the two command streams.

I11.4.1—1 1IGC Port

The IGC Port receives only one type of message, consisting of a stream of commands for the
IGC; the destination address is ignored, except for the LSB (see below). The command stream
may include regular IGC commands (executed SIMD in the 128x128 processors), transfer
commands (causing transfers between the EMC's and Backing Store), send-status commands
(causing a status message to be sent onto the Ring from the IGC Port), semaphore commands,
and commands to initialize the IGC and the EMC's. The commands for the IGC Port are
described in Section I11.4.2.

The Stream Parser strips the destination address from an incoming message and then begins
parsing the command stream. It passes the IGC commands which form the body of the
message to the IGC, generating the correct IGC register addresses and doing the required
hand-shaking with the IGC. The message body length may vary between 0 words and a
maximum of 1023 words. The IGC commands are 1 to 8 words long and must be properly
formatted as described below. If the Stream Parser is in the midst of processing a command
when the end of the message is reached (actually the beginning of the next message), an error
is generated and the Stream Parser begins parsing the next message from the beginning, and
the command that was "left hanging" is probably lost. This means that IGC commands are not
allowed to cross message boundaries.

If the LSB of the destination address is 1, the message is considered to be "flush-able". This

means that if AEQO (the all-enables-are-off signal for the pixel processors) is asserted when

processing of the message begins, the message will be discarded. The commands in a flushed

message will not be parsed, so any formatting errors will go undetected. Flushing is an

efficiency feature; time is still required to read the message from the FIFO, but WrEnLLPR and

GoLLPR are never asserted into the IGC, so there is no execution timi/-\— flush-able message

must not contain any commands which might cause AEO to be asserted, that is, which might& _(J,", 7 f'l'v's

del ¢'{’¢ ov

Pixel-planes 5 System Documentation Chapter III.4 Renderer “'1- NS a\
Rev 3.4 jge Mon, Feb 18, 1991 o J'\‘-l.‘ ‘.'

(onfyses

A a_ ar g

§1I1.4 — Renderer pg. 3

cause some of the pixel-processors to be re-enabled; furthermore, the flush-able message

. probably ought not to contain commands whose execution is independent of the state of the
Enable registers, such as Backing Store Transfer commamfs_]Finally, the message immediately
prior to a flush-able message must have at least 4 instructions (NO-OPs if necessary) after the
last instruction which affects the Enable registers, to ensure that the AEO signal has settled by
the time processing of the flush-able message begins. Also, if the message prior to a flush-able
message has a formatting error (ends in the middle of a command), operation of the flushing
feature will be unpredictable.

I11.4.1—2 Backing Store Port

The Backing Store Port receives just one type of message, containing formatted Backing Store
commands. Each command consists of an opcode followed by 0 or more arguments. The
number of arguments must be precisely as specified below. The destination address is treated
as the opcode of the first command, since the bits of the opcode corresponding to the node
address are not used. If this is not desired, set the first command of a message to be a
BS_NOOP (see below). The command set for the BS Port is much smaller and simpler than
that for the IGC Port, so it is fully described in this section.

. Commands for the BS Port are invoked using a set of macros contained in the file
bs_commands.h. For each macro, the first argument, 'p', is assumed to be a pointer to a
message buffer containing the message destined for the BS Port of a Renderer. Each macro
computes the opcode and arguments for the command, and places them into the message
buffer, incrementing 'p' as appropriate.

The BS macros are as follows:

BS_NOOP (p)
A no-op.

BS_SENDSTATUS (p, id, retaddr)

Causes a status message to be transmitted from the Backing Store Port. The outgoing status
message is sent to Ring address ‘retaddr’; the body of the status message consists of an ID
word given by the argument 'id’, followed by the Renderer status word itself. See

Section I11.4.1-5 for more information on status messages.

Pixel-planes 5 System Documentation Chapter ITI.4 Renderer
Rev 34 jge Mon, Feb 18, 1991

§I11.4 — Renderer pg. 4

' BS_RECEIVE (p, sector, scanline, no_scanlines, ptr)
Causes incoming data to be written into backing store. The argument 'ptr' points to an integer
array containing the data to be transferred. The argument 'sector' (range 0 to 127) specifies
the sector in backing store to which the data is to be written. Data is written in scanline order
(within the 128 x 128 pixel region), beginning with the scanline specified by the argument
'scanline' (range 0 to 127). The amount of data must be 128 * 'no_scanlines' words, that is,
a whole number of scanline segments (where a scanline segment is defined as a row of 128
pixel values within a sector). Minimum value for 'no_scanlines' is 1, maximum is 128 (an
entire sector) but subject to meximum message size restrictions (see Section I11.4.1-3 below).
If 'no_scanlines' goes beyond the end of the sector, it wraps around to scanline O of the
same sector.

BS_TRANSMIT (p, sector, scanline, no_scanlines, ret_addr)

Causes a message containing backing store data to be transmitted from the Backing Store
Port. The destination address for the outgoing message is given by ‘retaddr’. The body of the
outgoing message consists of 128 * 'no_scanlines' words of data from backing store; as with
the BS_RECEIVE command, the arguments 'sector’ and 'scanline' specify the backing store
data to be transmitted. The maximum length for the outgoing message depends on the
maximum message size specification for the destination device.

. BS_PBS (p)

Causes a "P" operation to be performed on the BS Semaphore. The P operation waits for the
BS semaphore counter to be non-zero, and then decrements the counter. The BS Semaphore
is incremented (V'ed) by an IGC_VBS() or IGC_VBSlater() command to the IGC Port.

BS_VIGC (p)

Causes a "V" operation to be performed on the IGC Semaphore. The V operation simply
increments the IGC semaphore counter. The IGC Semaphore is tested and decremented
(P'ed) by an IGC_PIGC() command to the IGC Port.

Pixel-planes 5 System Documentation Chapter III4 Renderer
Rev 34 jge Mon, Feb 18, 1991

§II1.4 — Renderer pg. S

Execution of each BS macro places a certain number of words into the message buffer. The
number of words in each command (including the opcode) is as follows:

COMMAND SIZE

BS_NOOP 1
BS_SENDSTATUS 3

BS_RECEIVE 1 + (128 * no_scanlines)
BS_TRANSMIT 2

BS_PBS 1

BS_VIGC 1

The Backing Store Port transmits two kinds of messages, status messages, and messages
containing backing store data. These outgoing messages are generated by incoming commands
as described above. It is important to realize that the Backing Store Port never processes two
commands simultaneously. That is, when a BS_SENDSTATUS or BS_TRANSMIT
command arrives, the Backing Store Port transmits the indicated outgoing message before
processing the next incoming message. Similarly, a BS_PBS command must complete before
the next command is executed. Thus, any of these 3 commands will halt the incoming message
stream until the outgoing message has been transmitted, or until the semaphore P operation is
complete. This can potentially lead to a deadlock situation, so the programmer must beware.

I11.4.1—3 Sizing of Messages

No message, to either the IGC Port or to the BS Port, should exceed the maximum message
size for that port. This maximum message size is equal to half the depth of the FIFO for that
port. FIFOs for both the BS and IGC Ports will be 2Kwords deep (perhaps upgraded to 4K
later), so the maximum message size will be 1024 words. This includes the destination
address, so the message body is limited to 1023 words. If any message violates these rules, the
receive FIFO (RxFIFO) for the port may be unable to absorb the message; this will generate an
error message, since some of the incoming message will be lost, thereby corrupting the
command stream.

Since IGC Port commands may not cross message boundaries, this means that the message
must be terminated at the proper point so that the next command does not exceed the maximum

message length.

BS Port commands are only a few words in length, except for the BS RECEIVE command.

Pixel-planes 5 System Documentation Chapter III4 Renderer

Rev 3.4 jge Mon, Feb 18, 1991

§II1.4 — Renderer pg. 6

For this command, the maximum message length restriction of 1024 words puts a limit of 7 on
the number of scanlines, since a message containing one BS_ RECEIVE command with 8
scanlines of data would be 8 * 128 + 1 = 1025 words in length. This also means that any other
commands in the message must not cause the total packet length to exceed 1024 words. So a
sector might be divided into 32 sub-sectors of 4 scanlines each, and a message containing one
BS_RECEIVE command sent for each sub-sector. Unfortunately this requires 32 messages
just to send one sector of data to a Renderer.

For the BS Port, it is possible to exceed the maximum message length, if it can be guaranteed
that the command stream can be processed at the full 20 MegaWord/sec rate supported by a
Ring channel. Specifically, the Renderer can swallow BS RECEIVE commands at full speed
(subject to some small fixed per-command overheads). However, other BS Port commands,
like BS_SENDSTATUS, BS_TRANSMIT, and BS_PBS, cannot be processed at a guaranteed
rate, since they depend on external events such as availability of an outgoing Ring channel and
receiver. So if it can be guaranteed, probably in the high-level software, that the BS Port of a
given Renderer is processing only BS RECEIVE commands at a given time (with perhaps a
few BS_VIGC commands sprinkled in), then the maximum message length restriction can be
ignored.

For example, a full sector of backing store data could be sent to a Renderer's BS Port in 3
messages, as follows. The first two messages would each contain one BS_RECEIVE
command, with 4 scanlines (512 words) or data. The third message would contain the
remaining 15K words of data. Since the combined length of the first two messages is greater
than one half the FIFO depth, this guarantees that when RxReady is asserted to enable the third
(over-sized) message, the BS Port is already processing the first message. Thus it is
guaranteed that the command stream can be processed at full speed since the FIFO contains
only BS_RECEIVE commands at this point. Of course, this also assumes that no other device
is simultaneously sending messages to this Renderer's BS Port. Another scheme would be to
send a BS_SENDSTATUS command, and then send the entire sector in one huge
BS_RECEIVE command when the returned status message is received.

II1.4.1—4 Using the Semaphores

The two hardware semaphores are used to achieve synchronization between the two Renderer
command streams: that is, between IGC commands (especially transfer commands, which
move data between backing store and the pixel processors) and incoming or outgoing backing
store data.

Pixel-planes 5§ System Documentation Chapter IlT.4 Renderer

Rev 34 jge Mon, Feb 18, 1991

§111.4 — Renderer pg.7

Each semaphore consists of an 8-bit counter with overflow and zero-detection, and arbitration
logic on the increment and decrement inputs. Both counters are zeroed when the Ring is reset.
The BS Semaphore is incremented by a IGC_VBS command to the IGC Port, and tested and
decremented by a BS_PBS command to the BS Port. Similarly, the IGC Semaphore is
incremented by a BS_VIGC command to the BS Port, and tested and decremented by a
IGC_PIGC command to the IGC Port.

For example, the BS Port command stream might include BS_RECEIVE commands containing
a sector of backing store data, followed by a BS_VIGC command; the IGC Port command
stream would include a IGC_PIGC command, followed by a command to transfer the new data
into the pixel processors. So, after the entire sector of BS data had been received from the
Ring, the IGC Semaphore would be incremented, causing the IGC_PIGC command to
complete, and allowing the transfer of the new data into the pixel processors.

The contents of the semaphore counters are also visible in status messages, so the semaphore
counters could be used in other ways as well. For example, the IGC Semaphore counter might
be used to count the number of regions processed by that Renderer, and this value read back
into a GP in a status message.

If either semaphore counter overflows, an error mesage is generated and one of the sticky error
bits is set. The count value just wraps around to zero.

II1.4.1—5 Status and Error Messages

Status messages are generated in response to commands to either the BS Port or the IGC Port.
A BS_SENDSTATUS command to the BS Port (described above in Section I11.4.1-2)
generates an outgoing status message from the BS Port; an IGC_SENDSTATUS command to
the IGC Port (described below in Section I11.4.2) generates an outgoing status message from
the IGC Port.

The format for the outgoing status message from the two ports is very similar. The outgoing
status message contains 3 words: (1) the destination address, (2) the status message ID, (3)
and the Renderer status word itself. The destination address is supplied as an argument to the
command generating the message. The status message ID differs slightly for the 2 ports: for a
BS status message, the status message ID is supplied as an argument to the

BS_SENDSTATUS command; for an IGC status message, the upper 3 bytes of the status
message ID is supplied as an argument to the command, and the lower byte is a unique board
ID number blown into a PAL when the Renderer board is assembled. The Renderer status

Pixel-planes 5 System Documentation Chapter III.4 Renderer

Rev 34 jge Mon, Feb 18, 1991

§I11.4 — Renderer pg. 8

. word is similar for the two ports, and is formatted as follows:
0-3 inverses of AEO signals from the pixel processors
4 << RESERVED >>
5 << RESERVED >>
6 TxReady asserted on BS Port
7 TxReady asserted on IGC Port
8-15 Contents of BS Semaphore counter (LSB at bit 8)
16-23 Contents of IGC semaphore counter (LSB at bit 16)
24 * BS Semaphore overflowed (ERROR)
25 * IGC Semaphore overflowed (ERROR)
26 * BS RxFIFO was overwritten (ERROR)
27 * IGC RxFIFO was overwritten (ERROR)
28 * formatting error or bogus command in BS cmd stream (ERROR)
29 * formatting error in IGC command stream (ERROR)
30 * IGC timeout (64K 20 MHz cycles without a new cmd) (ERROR)
31 * IGC "indicator" signal (on/off under IGC control)

The bits marked with **' are available only in the status message transmitted from the IGC
. Port; they do not appear in the status word from the BS Port.

The protocol for generating the status message differs slightly for the two ports. When the BS
Port receives a BS_SENDSTATUS command, it immediately attempts to acquire the outgoing
port and receiver and sends the message. No further processing occurs at the BS Port until the
status message has been sent. When the IGC receives a IGC_SENDSTATUS command, it (1)
waits for any pending status or error message transmission to complete, (2) latches the return
address, status message ID, and status word into the status transmitter, and (3) tells the
transmitter to begin transmitting the status message. Thus, the IGC_SENDSTATUS command
returns without waiting for successful completion of the outgoing status message (although the
status information at the time of execution of the IGC_SENDSTATUS command is
preserved), and the IGC may continue executing additional instructions . However, the next
IGC_SENDSTATUS command will await successful completion of the pending status
transmission.

Error messages are spontaneously generated when an error condition occurs on the Renderer,
and are always transmitted from the IGC Port. An error message has the same format as a
status message, but is always sent to Ring address 0. The upper 24 bits of the status message
ID for an error message are garbage, while the lower byte indicates which board sent the
message. The bits marked "ERROR" in the status word format given above represent various

Pixel-planes 5 System Documentation Chapter II1.4 Renderer
Rev 3.4 jge Mon, Feb 18, 1991

§111.4 — Renderer pg. 9

types of errors which can occur in the Renderer. When a given type of error occurs, an error
strobe is asserted for one or more cycles. This error strobe causes the corresponding bit in the
status word to be set, and to remain set until Reset is asserted. The logical-OR of the error
strobes causes an outgoing error message to be generated from the IGC Port. If an error
occurs, it will wait for any status message to be sent out for which the IGC_SENDSTATUS
command has completed, before sending the error message. However, if an
IGC_SENDSTATUS command is executing, it will be interrupted and that status message will
be lost. Any additional errors which occur while the first error message is being transmitted
will cause additional error messages to be generated.

The Renderer also has a bank of 16 LEDs on the front panel. Illumination of the each LED
indicates the following conditions:

global all enables are off (AEO) signal is asserted
BusyHSPR signal from IGC is asserted

BS Semaphore is non-zero

IGC Semaphore is non-zero

BS Port receive FIFO is not empty

IGC Port receive FIFO is not empty

TxReady is asserted on BS Port

TxReady is asserted on IGC Port

BS Semaphore counter overflow error

IGC Semaphore counter overflow error

BS RxFIFO overwritten error

IGC RxFIFO overwritten error

formatting error or bogus command in BS cmd stream
formatting error in IGC command stream

IGC timeout error

IGC "indicator" signal is asserted

O 00NN WN b WN=O

Pt i
-0

e e
Wn A~ W

I11.4.1—6 " All Enables Are Off" Signal

The "all enables are off" mechanism provides a global logical-NOR of the Enable registers in

the array of 1282 pixel processors. This feature can be used for several purposes, using several
mechanisms.

It can be used as an efficiency enhancement: if all of the pixel processors are disabled, there is
no point in executing additional IGC commands of the type which only affect Enable'd pixel

Pixel-planes 5 System Documentation Chapter ITT.4 Renderer

Rev 34 jge Mon, Feb 18, 1991

§111.4 — Renderer pg. 10

processors. Another example would be collision detection,where the Enable register represents
"contact” at a particular pixel or voxel. Another might be computing maxima and minima over
the array of pixel processors or subsets thereof.

"All enables are off" can be used via 4 hardware mechanisms.

First, one of the LED indicators lights when AEO (global logical-NOR of Enable registers) is
asserted. This will be useful for debugging purposes, and perhaps for a crude measure of IGC
utilization on certain algorithms.

Second, the Renderer status word contains 4 versions of the AEQO signal, each representing 32
columns in the 128x128 array. AEOQO (bit O of the status word) is the logical-OR of the Enables
for pixels in columns 0-7, 32-39, 64-71, and 96-103 of the Renderer region (that is, 4 evenly
spaced 8-pixel wide vertical stripes). Similarly, AEO1 is the logical-OR of the Enables for
columns 8-15, 40-47, 72-79, and 104-111, and so on.

Third, messages to the IGC Port can be made "flush-able" by setting the LSB of the destination
address. For a flush-able message, if AEO is asserted at the time processing of the message
begins, then the entire message will be flushed. This is explained in detail in Section I11.4.1-1.
Note particularly that in any message prior to a flush-able message, the last command which
might affect AEO (those in Section I11.4.2.5.1-2) must be followed by at least 4 additional
commands (IGC_NOOPs if necessary).

Fourth, the IGC can branch conditionally based on AEQ, so certain IGC commands can
execute conditionally based on AEO. This can be used to implement certain functions such as
maximum and minimum.

Pixel-planes 5 System Documentation Chapter IT14 Renderer

Rev 3.4 jge Mon, Feb 18, 1991

§1I1.4 — Renderer pg. 11

‘ 11.4.2. IGC COMMAND INPUT

The first 2 sub-sections are for reference purposes. Section II1.4.2.3 is for reference and for
use by assembly language programmers. Section I11.4.2.4 describes the macros used for
generating IGC command input from 'C' programs.

I11.4.2.1—Format of the IGC Command Stream

Messages received by the IGC Port are parsed into IGC commands by the Stream Parser.
These commands consist of an opcode, followed by optional supplementary opcode and up to
6 coefficients (for the QEE). The coefficients to be expected are defined by 4 bits in the opcode
which control the Stream Parser. The optional arguments, and the order in which they occur,
are defined as follows:

ARGUMENTS Bit 31 Bit21 Bit20 Bit 19

none 0 0 0 X
P 1 0 0 X
C 0 0 1 X
‘ P,C 1 0 1 X
A,B,C 0 1 0 X
P,A,B,C 1 1 0 X
D,E,F,A,B,C 0 1 1 1
P,D.E,F,A,B,C 1 1 1 1
c.,...,C 0 1 1 0
P,C,....C 1 1 1 0

Bit 31 indicates that a supplementary opcode (P word) follows; bits 20 and 21 are known as
the CoefMode field of the opcode and indicate that either 00: no coefficients follow; 01- only
the constant coefficient C follows; 10- only the linear coefficients A, B, and C follow; or 11-
all 6 coefficients A-F follow (unless bit 19 = 0).

Normally, bit 19 is ignored by the Stream Parser, and is part of the QEEMode setting (see
below). However, when bits 20 and 21 are set, bit 19 is normally required to be set;
otherwise, this illogically indicates that all 6 quadratic coefficients are sent, but the quadratic
expression evaluator is in no_coeffs or constant mode and therefore would use at most the C
coefficient. This combination would not, and in fact must not, be used for normal
instructions. If bits 20 and 21 are 1, but bit 19 is 0, a special mode is invoked in which one

Pixel-planes 5 System Documentation Chapter Il14 Renderer
Rev 3.4 jge Mon, Feb 18, 1991

§I11.4 — Renderer pg. 12

opcode actually generates many IGC instructions, one for every C coefficient which follows;
the C coefficients must have bit 31 = 0, except that the last coefficient is flagged with bit 31 =
1. This format allows compact representation of a sequence of commands using the same
opcode but different C coefficients; it was designed to be used for lookup tables.

111.4.2.2—Format of IGC Command Data Words

As seen above, each IGC command has two components: the opcode and possible
supplementary opcode, and the coefficients A-F (or some subset thereof); each command
has two sorts of arguments, those which are encoded in the opcode and supplementary
opcode, and the coefficients.

The opcode and supplementary opcode can be generated using macros contained in the
header file igc_opcodes.h (created by the IGC microcode assembler asmpp5).

Opcode. For a given command, identified as COMMANDNAME (argl, arg2, ...) in
the command synopses, evaluation of the corresponding macro I_COMMANDNAME()
in igc_opcodes.h generates most of the opcode. However, two 2-bit fields of the opcode
must be specified by the user.

The QEEMode field, bits 18 and 19 of the opcode, defines operation of the QEE, as
follows:

Bit 19 Bit 18 Mode QEE function
0 0 —_— QEE not used
0 1 constant Qx,y)=C
1 0 linear Qix,y)=Ax+By+C
1 1 quadratic Qxy) = Dx2 + Exy + Fy2 +Ax+By+C

In quadratic mode, the full bi-quadratic expression is computed in the QEE. If linear mode is
specified, the QEE's compute just the linear portion, Ax + By + C, and the D, E, and F
coefficients are ignored; the D,E, and F registers need not be explicitly zero-ed, and their
previous values will still be in the registers if it is desired to re-use them when running the QEE
in quadratic mode in a subsequent instruction. Similarly, constant mode causes the QEE to just
compute the constant C, without requiring O's to be written to the other 5 coefficient registers
and without disturbing the contents of those registers. The QEEMode field is 00 in the macro
generated opcode. If the instruction does not use the QEE, this field must not be modified; if

Pixel-planes 5 System Documentation Chapter II.4 Renderer

Rev 34 jge Mon, Feb 18, 1991

§I11.4 — Renderer pg. 13

the instruction does use the QEE, it must be set to a non-zero value according to the desired
QEE mode.

The CoefMode field, bits 20 and 21, together with bit 31 (the long/short bit), define
which coefficients and possible supplementary opcode are to follow the opcode, as
described above. The CoefMode field in the macro-generated opcode is always 00. The
user must set this field according to which coefficients are to follow the instruction, as
shown in the table above. For instructons which use the QEE, CoefMode is usually set to
the same value as QEEMode, unless it is desired to re-use previously sent coefficient
values. For instructions which do not use the QEE, but which do use the C coefficient as
an integer scalar, CoefMode is set to 01 (C only), unless the previous C value is to be re-
used, in which case CoefMode is set to 00 (no coeffs sent).

Note also that the combination CoefMode = 11, QEEMode = Ox (illogical in the normal usage
since it specifies sending all 6 coefficients for a command which does not use the QEE in
quadratic mode) flags the special lookup table mode (see Section 1I1.4.2.1 above). This mode
is used only for non-QEE instructions, usually instructions which use the C coefficient as a
scalar. It generates an IGC instruction for each C coefficient which follows the opcode, ending
when the first coefficient is read for which bit 31 = 1.

Supplementary Opcode. Bit 31 in the macro-generated opcode indicates whether or not
the command requires a supplementary opcode. This bit should not be modified. The user can
test this bit, or test to see if P_COMMANDNAME is defined in igc_opcodes.h. If so, the
macro P_COMMANDNAME is evaluated to generate the supplementary opcode. The user
need never modify the supplementary opcode; however, in rare cases, efficiency concerns may
make it desirable to alter FBITS as part of a non-QEE instruction, rather than by sending a
separate FBITS instruction. To do this, the FBITS field (bits 23-30) is modified; see details in
IGC Microcode Assembler documentation.

Coefficients. The format for the quadratic expression evaluator coefficients (A,B,C,D,E,F)
is the IEEE standard single-precision floating-point format: bits 0-22 represent the fractional
portion of the mantissa, with an understood 1 to the left of the radix point; bits 23-30 represent
the exponent in excess-127 form; and bit 31 is the sign-bit (the representation is
sign/magnitude). Valid values for the coefficients are with exponents in the range -FBITS to
63-FBITS (FBITS is the number of fractional bits carried in the coefficients, see below).
Coefficients with magnitudes outside this range are treated as 0; this includes very large and
very small numbers, zero, and the exceptions defined in the IEEE standard.

For some instructions, the C coefficient is treated as a 32-bit signed integer, referred to as

Pixel-planes 5 System Documentation Chapter I114 Renderer

Rev 34 jge Mon, Feb 18, 1991

§III.4 — Renderer pg. 14

the 'scalar’ in descriptions of the command set below. The C coefficient uses the same
hardware register if it is used as a QEE coefficient or as a scalar, so C cannot be re-used by
a QEE instruction if it has been overwritten by a scalar instruction, or vice versa.

I11.4.2.3—Generating the IGC Command Stream

The above 2 sections show how to generate the IGC command data and how it should be
formatted in the command stream. This section summarizes that information and describes
another set of macros which facilitates generating IGC command input from assembly language
programs.

The file igc_opcodes.h also contains a set of macros of the form Ix COMMANDNAME.
These generate the entire I opcode, including the bits QEEMode (bits 18-19) and CoefMode
(bits 20-21) fields.

IGC commands can be divided into three categories:

1) those which use neither the quadratic expression evaluators (QEE) nor the
scalar argument (SCA)

2) those which use the QEE ("tree" appears in the command synopsis)

3) those which use the scalar argument (“'sca" appears in the command synopsis)

Those in the first category have just one Ix_ macro defined, x_COMMANDNAME().

Commands which use the QEE (these are identified by "tree"” in the command synopsis) may
operate the QEE is quadratic, linear, or constant mode, and have several options of how many
coefficients to send with each mode. There are a total of nine permutations, so each command
which uses the QEE has a total of nine Ix_ macros:

Ix._ COMMANDNAME_CO ()
Ix_COMMANDNAME C1 ()
Ix_COMMANDNAME _LO ()
Ix_COMMANDNAME _L1 ()
Ix_COMMANDNAME _L3 ()
Ix_COMMANDNAME_QO (
Ix_ COMMANDNAME_QI (
Ix_COMMANDNAME_Q3 ()
Ix. COMMANDNAME_Q6 ()

Pixel-planes 5 System Documentation Chapter III.4 Renderer

Rev 34 jge Mon, Feb 18, 1991

§I11.4 — Renderer pg. 15

where the letter following the command name, C, L, or Q, causes the QEEMode to be set to
constant, linear, or quadratic mode respectively, and the digit following this letter causes the
CoefMode to be set for 0 (no coefficients), 1 (C) coefficient, 3 (A,B,C) coefficients, or 6

(A,B,C,D,E,F) coefficients.

Commands which use the C coefficient as a scalar argument (these are identified by "sca"
appearing in the commands synopsis) may send the C scalar, send no coefficient and use the
previously sent C value, or use the lookup table mode, and send an array of C coefficients,
each of which causes a separate execution of the instruction. Each command which uses the

scalar has three Ix_ macros:

Ix_COMMANDNAME_S0 ()
Ix_COMMANDNAME _S1 ()
Ix. COMMANDNAME_TBL ()

where the _SO form sets CoefMode to send no coefficient, _S1 sets CoefMode to send a scalar
value, and _TBL sets the CoefMode to 11 which invokes the lookup table mode (since

QEEMode is set to 00).

These macros can be used to generate a command as follows:

1) generate the opcode using the appropriate Ix_COMMANDNAME macro,
according to the QEEMode desired and the number of coefficients to be sent,
and add it to the command stream

2) test the opcode for bit 31 = 1, or optionally, test "ifdef P_COMMANDNAME";
if so, evaluate the macro P_COMMANDNAME to generate the supplementary
opcode, and add it to the command stream

3) if the command is of the type that uses the QEE or scalar, add the specified
coefficients to the command stream, according to the form of the Ix_ macro used:

_Co, _L0, _Q0, _S0
_C1, _L1,_Q1
L3, Q3
Q6
_S1
TBL

no coefficients (previously sent coefficients are used)
C coefficient (_L1 and _Q1 use previous A,B,C,D,E)
A,B,C coefficients (_Q3 uses previous D,E,F)
A,B,C,D.EF coefficients

C coefficient (interpreted as integer "scalar™)

a sequence of one or more C scalar coeffs,

terminated by the first one with bit 31 =1

Pixel-planes 5 System Documentation

Chapter III.4 Renderer
Rev 34 jge Mon, Feb 18, 1991

§II1.4 — Renderer pg. 16

It is important that the formatting of the command stream be precisely as specified, else
incorrect results will result or the Renderer will hang.

111.4.2.4—The 1GC Macros

The simplest way to generate IGC command data, from a 'C' program, is by using the set of
macros contained in the file igc_commands.h (generated by the IGC microcode assembler).
These macros are built on top of the Ix_, I_ and P_ macros described above.

For every command described under Section II1.4.2.5 below, igc_commands.h contains
either 1, 3, or 9 macros. Each macro represents one of several forms of the command. The
arguments to the IGC macro are a pointer to a message buffer to write the command stream,
followed by the arguments to the command as described in Section I11.4.2.5, followed by
possible QEE coefficients or scalar. When evaluated, the IGC macro places a number of 32-bit
words into the message buffer. The user must declare and initialize the pointer.

There is no error checking on the arguments to these macros; the user must insure that the
arguments are legal, according to the rules described below in the description of the command
set.

IGC commands can be divided into three categories:

1) those which use neither the quadratic expression evaluators (QEE) nor the
scalar argument (SCA)

2) those which use the QEE ("tree" appears in the command synopsis)

3) those which use the scalar argument ("sca" appears in the command synopsis)

Those in the first category just have one IGC macro. For example, the command
SETENABS() has one IGC macro, IGC_SETENABS (p). This macro simply places the
opcode for SETENABS at the location pointed to by 'p', and bumps 'p'. Were SETENABS an
instruction which uses the supplementary opcode, it would be placed at the next location and
'p' bumped again.

Commands which use the QEE (these are identified by "tree” in the command synopsis) may
operate the QEE is quadratic, linear, or constant mode, and have several options of how many
coefficients to send with each mode. There are a total of nine permutations, so each command
which uses the QEE can be invoked using one of nine different IGC macros. For example the
command MEMpluseqTREE(dst,src,len)can be invoked using the following macros:

Pixel-planes 5 System Documentation Chapter Il14 Renderer

Rev 34 jge Mon, Feb 18, 1991

§III.4 — Renderer pg. 17

IGC_MEMpluseqTREE_CO (p, dst, src, len)
IGC_MEMpluseqTREE_CI (p, dst, src, len, C)
IGC_MEMpluseqTREE_LO (p, dst, src, len)
IGC_MEMpluseqTREE_L.1 (p, dst, src, len, C)
IGC_MEMpluseqTREE_L3 (p, dst, src, len, A, B, C)
IGC_MEMpluseqTREE_QO (p, dst, src, len)
IGC_MEMpluseqTREE_Q1 (p, dst, src, len, C)
IGC_MEMpluseqTREE_Q3 (p, dst, src, len, A, B, C)
IGC_MEMpluseqTREE_Q6 (p, dst, src, len, A, B, C, D, E, F)

In each IGC macro, the letter following the command name, C, L, or Q, indicates whether the
QEE is to be operated in constant (Q(x,y) = C), linear (Q(x,y) = Ax + By + C), or quadratic
(Q(x,y) = Dx2 + Exy + Fy2 + Ax + By + C) mode. The digit following this letter represents
how many coefficients are to be sent with the instruction. As described above, with the
quadratic mode, one may send all 6 coefficients, just send A, B, and C and use the previous
values of D, E, and F, just send C and use the previous values of the other 5 coefficients, or
send none of the coefficients and just use the previous values. Similarly, with the linear mode,
one may send A, B, and C, just C, or none of the coefficients. With constant mode, one may
send the C coefficient or re-use the previous C coefficient. (CAUTION: Previously sent
coefficient values may not be re-used after changing using the FBITS() command, or after re-
initializing or reloading the microcode store of the IGC).

Commands which use the C coefficient as a scalar argument (these are identified by "sca"
appearing in the commands synopsis) can be invoked using one of three IGC macros. One may
send the C scalar (the C coefficient interpreted as a 32-bit signed integer), send no coefficient
and use the previously sent C value, or use the lookup table mode, and send an array of C
coefficients, each of which causes a separate execution of the instruction. For example, the
command MEMeqSCA (dst,dlen) can be invoked using these IGC macros:

IGC_MEMeqSCA_SO (p, dst, dlen)
IGC_MEMeqSCA_S1 (p, dst, dlen, S)
IGC_MEMeqSCA_TBL (p, dst, dlen, PTR)

The SO form sends no scalar value, using the previously sent one. The S1 form sends a scalar
value S. The TBL form uses the argument PTR as a pointer to an 'int' array containing a
number of S values. The command is executed once for each value of S in the PTR array, up to
and including the first value with MSB = 1. Note that this TBL form can only be used in
sinations where only the 31 LSB's of the scalar are used, since the MSB is used as a flag

Pixel-planes 5 System Documentation Chapter III.4 Renderer

Rev 3.4 jge Mon, Feb 18, 1991

§II1.4 — Renderer pg. 18

indicating the final value. Also, the scalar uses the same IGC register as the C coefficient for
QEE expressions. Thus a scalar value will be overwritten by a QEE instruction which writes a
C coefficient, and vice versa.

-

I11.4.2.5—The IGC Command Set

The IGC command set can be divided into several categories: commands that are executed
SIMD in the 128x128 array of pixel-processors in the enhanced-memory chips (EMC's);
commands to transfer data between the EMCs and the VRAM backing store; commands to
initialize and read/write the microcode store of the Image Generation Controller; commands to
configure the quadratic expression evaluators (QEE's) of the EMC's; and commands to control
the hardware semaphores.

I11.4.2.5.1—Commands for the SIMD Pixel-Processor Array

The array of pixel processors execute the same instruction stream in parallel. Pixels cannot
communicate with each other; each can write results only into its own pixel-memory. Each
pixel processor consists of the following;:

Memory:

208 bits of random access memory. The programmer usually divides this memory into
segments of various lengths, each of which contains an unsigned or two's complement signed
integer. This segmentation is the same at each pixel.

ALU:

(Arithmetic and Logic Unit) performs operations on memory segments, the Enable register, the
Carry register, QEE results, and the scalar. Results may be written into memory segments, the
Enable register, and the Carry register.

Enable Resister:

Used to condition most writes into pixel-memory. In particular, most instructions which
generate arithmetic/logical results write those results into pixel memory only at enabled pixels,
meaning those pixels where the Enable register contains a '1'.

Carry Register:
May contain the carry result from the last arithmetic operation, for both enabled and disabled

Pixel-planes 5 System Documentation Chapter III.4 Renderer

Rev 3.4 jge Mon, Feb 18, 1991

§II1.4 — Renderer pg. 19

pixels. However, this Carry register was not designed to be used in the conventional way, to
convey information fom one IGC instruction to a later one; it does not reliably contain
overflow/underflow information from an instruction, unless the instruction is specifically
designed in this way. Instructions which use the Carry register automatically clear it before
execution of the instruction begins, so it need not be explicitly cleared before an operation. (Az
some point, commands which disturb the CRY register should be flagged).

All pixel-ALU's execute the same instruction on each cycle, but memory writes on arithmetic
operations are conditioned by each pixel's Enable register. A pixel whose Enable register has
been cleared can be thought of as disabled or 'turned off.' For example, the standard polygon
algorithm scan-converts a polygon by disabling pixels outside the polygon before loading color
information to shade the polygon.

The instruction set for the SIMD pixel-processor array resembles that of a simple micro-
processor. Operands may include: arbitrary length signed or unsigned integers in pixel-
memory; the constant, linear, or quadratic QEE result computed from floating-point coefficients
of the instruction; the scalar; the Enable register, and the Carry register.

Integers defined in pixel memory have their LSB at their lowest address. Memory segments
are identified with the notation mem([lIsb, len]. For example, an 8-bit integer in the memory
segment at bits 24 through 31 (with LSB at bit 24) is denoted mem[24 : 8]. Contents of
memory segments may represent unsigned or two's-complement signed integers. For many
instructions, it does not matter if the contents of the memory segment are treated as signed or
unsigned; for others it does, and these are noted. Each memory segment must, of course, be
wholly containedwithin the 208 bits of pixel-memory. Maximum length of memory segments
is at least 40 bits in all cases, but actually depends upon the specific instruction, as described
below.

The QEE result (Dx2 + Exy + Fy2 + Ax + By + C) is always two's-complement signed. It
may either be fully computed to its sign-bit (identified with the notation tree), or some fixed
number of bits of the QEE result may be computed (identified with the notation tree[n]); when
tree[n] is specified, the QEE result is always sign-extended to n bits, regardless of its actual
length. The QEE result is treated the same in an instruction, regardless of whether the full
quadratic form, the linear form (Ax + By + C), or the constant form (C), is generated; it is
simply denoted as tree in the command set description, and its actual form is specified by the
user when specifying each instance of the command.

Before computing the QEE result, the floating-point coefficients are converted to fixed-radix
form, with a number of fractional bits given by the setting for FBITS; the coefficients are

Pixel-planes 5 System Documentation Chapter III.4 Renderer

Rev 34 jge Mon, Feb 18, 1991

§1I1.4 — Renderer pg. 20

truncated, and this truncation is always towards zero. The QEE result is computed exactly from
these truncated coefficients, and then the QEE result is truncated to an integer; unlike the
coefficient truncation, this truncation is always downward, hence negative values are truncated
away from zero. For example, the linear expression x+y+1.99 will evaluate to the integer '1’
at pixel x=0, y=0, while x+y-1.99 will evaluate to the integer '-2'. The coefficient truncation
can also give suprising results; for example, with an FBITS setting of 10, the linear expression
0.1x + y + 0 will evaluate to the integer 0 at x=10, y=0, since 0.1 is truncated to 102/1024, the
QEE result at pixel (10,0) is 1020/1024, and this is truncated to 0. On the other hand, -0.1x +
y + 0 evaluates to the integer -1 at x-10, y=0. These surprising and mildly disconcerting results
may be described by the following general rule:

max. error in a linear QEE result is 1 if FBITS = log, (screen dimension) + 1.

Similarly, for full quadratic expressions:
max. error in a quadratic QEE result is 1 if FBITS = 2* [log, (screen dimension)+1].

Since an error of 0 is impossible, an error bound smaller than 1 makes no sense; this is
because, although FBITS fractional bits of the coefficients are generated, only the integer
portion of the QEE results are available at the pixel-ALU and pixel-memory. In summary, two
truncations occur when floating-point coefficients are supplied to the EMC's, which are
essentially integer devices: (1) the coefficients are truncated, towards zero, during the
conversion to fixed-point, (2) the QEE result compued from these fixed-point coefficients is
truncated, downwards, to an integer.

For some instructions, the C coefficient is treated as a 32-bit integer, denoted sca, rather than
as a coefficient for the QEE. Its value is the same at all pixel-processors. Note that this is
different from using the QEE in constant (Q(x,y) = C) mode, where C is a floating-point
number. This scalar is denoted sca[n] when only its n bits are to be used; if n > 32, the value
is sign-extended. Use of tree and sca in an instruction are mutually exclusive.

Maximum length for memory segments used in operations that do not use the QEE result,
denoted dlen and slen in the instruction syntax, is 128; this includes operations that use the
scalar coefficient sca, although sca is sign-extended if the computation proceeds beyond 32
bits. Maximum length of memory segments for instructions which use the QEE result, denoted

len, i$73-FBITS (always atdeast 43).

Minimum value for len, dlen, and slen is 1, unless otherwise noted.

No error checking is done on arguments to the instructions. Unpredictable behavior may occur
if illegal arguments are given.

Pixel-planes 5 System Documentation Chapter II1.4 Renderer

Rev 3.4 jge Mon, Feb 18, 1991

¢

§I11.4 — Renderer pg. 21

(If necessary, microcode could be written to test for length arguments of 0, with the penalty that the maximum
for 'dlen’ and 'slen’ be reduced to 127. See the IGC hardware designer if you require zero-checking).

Instructions for the SIMD array can be divided into several categories: the FBITS instruction,
instructions to modify the Enable register, instructions to store the Enable register,
arithmetic/logical instructions, global instructions, and special-purpose instructions.

IV.4.2.5.1—1 Changing Number of Fractional Bits

The coefficients (A,B,C,D,E, and F) sent with a command to be used by the quadratic
expression evaluator registers are IEEE-standard single-precision floats. Since the QEE
computes in integer arithmetic, these floating-point coefficents nust be converted to a bit-
serial 2's complement fixed-point representation. The number of fractional bits in the fixed-
point representation (FBITS) is variable between 0 and 30. The command

FBITS(N)
changes the number of fractional bits to N.

For instructions which follow an FBITS instruction, all QEE coefficients must be sent again,
even if they are the same as previously loaded values.

The user may decrease FBITS to speed up instruction execution, or increase FBITS to provide
greater precision. It is important to remember that floating-point coefficients are truncated to
FBITS fractional bits, and therefore precision can be lost, depending on the magnitude of the
coefficient and the setting for FBITS. (See the discussion above).

Additionally, since the number of bits of coefficients that the hardware can support is fixed, the
maximum allowable coefficient exponent is dependent on the value of FBITS: any coefficient
with an exponent larger than 63-FBITS is treated as zero. Also, the maximum value of the len
argument, in instructions which use the QEE result, is equal to 73-FBITS.

For instructions which do not use the QEE result, including instructions which interpret the C
coefficient as a scalar, the setting of FBITS affects neither the speed of execution, nor the
precision of the results, nor the valid range for the instruction arguments.

(It may also be possible to change FBITS as part of a regular command, if that command does not use the

QEE result. This may be done if efficiency concerns dictate. See the above sections and/or the IGC hardware
designer for details.)

Pixel-planes 5 System Documentation Chapter 114 Renderer

Rev 3.4 jge Mon, Feb 18, 1991

§111.4 — Renderer pg. 22

I11.4.2.5.1—2 Instructions to Modify the Enable Register

These instructions alter the contents of the Enable register. Remember that most of the
arithmetic/logical instructions, to be described below, affect only pixels whose Enable register

is set.
instruction
CLRENABS ()
SETENABS 0
ENABINV ()
MEMintoENAB (src)
TREEeqZERO O
TREEgeZERO ()
TREEIRZERO ()
MESH (len)
GRID (len)
MEMeqZERO (sre, slen)
MEMeqONES (src, slen)
MEMneZERO (src, slen)
MEMeqSCA (sre, slen)
MEMgeSCA (sre, slen)
MEMgtSCA (src, slen)
MEMeqMEM (Isrc, src,slen)
MEMneMEM (Isrc, src,slen)
MEMgeMEM (Isrc, src,slen)
MEMgtMEM (Isrc, src,slen)
MEM2geMEM2 (Isrc, src,slen)
MEM2gtMEM2 (Isrc, src, slen)
MEMeqTREE (src, len)
MEMneTREE (src, len)
MEMIeTREE (src, len)
MEMItTREE (src, len)
MEMgeTREE (src, len)
MEMgtTREE (src, len)
ENABandeqMEM (src)
ENABandeqMEMBAR(src)

Synopsis
enable =
enable =
enable =
enable -
enble &&=
endble &&=
endble 33=
encble &&=
enable &&=
enable &&=
endble &3=
endble &&=
endble &8=
endble &&=
endble &3=
axbe &8=
acble &&=
enable &&=
endble &&=
ensble &&=
enable &&=
enable 8&=
enable &&=
endble &&=
endble &&=
endble 88
enble &&=
endble &&=
endble &&=

see note

0

1

lenable

mem [src: 1]

{troe == 0)

(troe >=0)

tree < 0)

(treeflen} == 0)

(reeflen] =)

(mem [src : slen] ==0)

(mem [src: slen] == ~0)

(mem [src : slen] = 0)

(mem [src: slen] == sca [slen]

(mem [src: slen] >= sca [slen]

(mem [src: slen] > sca [slen]

(mem [isrc : slen] == mem [src: slen])
{mem [isrc: slen] k= mem [src: slen])
(mem [isrc : slen] >= mem [src: slen])
(mem [Isrc : slen] > mem [src: slen])
(mem fisrc : slen] >= mem [src: slen])
(mem [isrc : slen] > mem [src: slen])
(memisrc:len] == treeflen])
(mem{src: len] I= treeflen])

{mem [src : len] <= free)

(memsrc :len] < tree)

(mem [src : len] >= tree)

(mem src:len] > tree)

mem [src:1]

N N == -

W W w w

~mem [src:1]

Pixel-planes 5 System Documentation

Chapter III.4 Renderer
Rev 3.4 jge Mon, Feb 18, 1991

§I11.4 — Renderer pg. 23

ENABoreqMEM (src) enable = mem[srcl]
ENABxoreqMEM (sre) enable M= mem[src:1]
CRYintoENAB () enable = camy
ENABoreqCRY 0 enable | cany

I11.4.2.5.1—3 Instructions to Store the Enable Register

These instructions are used to store the Enable register into memory, or the Carry register.
These writes occur regardless of the contents of the Enable register.

instruction synopsis

ENABintoMEM (dst) mem [dst: 1] = enable;
MEMoreqENAB (dst) mem [dst: 1] = enable;
MEMandeqENAB (dst) mem [dst: 1] &% = enable;
ENABIntoCRY () carry = enable;

111.4.2.5.1—4 Arithmetic and Logical Instructions

These arithmetic and logical instructions operate on signed QEE results and signed or unsigned
integers in pixel memory.

Instructions may have up to 3 possible pixel-memory operands: the destination operand dst,
and 2 source operands, Isrc and src. Unless otherwise noted, the operands need not be
distinct, but dst must not partially overlap Isrc or src. Unless otherwise noted, dst and Isrc
must have the same length , dlen. The source src may have a different length, slen.The
following rules apply to instructions which have separate length arguments:

dlen == slen : overflow and underflow are discarded

dlen > slen : carry/borrow is rippled through all bits of destination;
src may be considered unsigned or signed, as noted

dlen < slen : higher order bits of src are ignored

As described above, maximum value for the dlen and slen arguments is 128, maximum value
for the /en argument is 73-FBITS, and minimum value for all length arguments is 1 (unless
otherwise noted). Segment lengths must be contained within the 208 bits of pixel memory.

Pixel-planes 5 System Documentation Chapter Il1.4 Renderer

Rev 3.4 jge Mon, Feb 18, 1991

§111.4 — Renderer pg. 24

The arithmetic instruction writes are all conditioned by the Enable register, though the ALU
actually carries out the instruction at each pixel, affecting the Carry register in the process.

(It is possible to write these instructions so that the result is written into pixel-memory regardless of the setting
of the Enable register. Normally, if this is desired, it is simple to first set the Enable register using a
SETENARBS instruction. However, Enable-independent instructions could be supplied. See the IGC hardware
designer for details.)

instruction synopsis see note
CLEAR (dst, dlen) mem [dst : dlen] = 0

SET (dst, dlen) mem [dst : dlen] = ~0

CLRCRY 0 carry = 0 1
TREEintoMEM (dst, len) mem [dst : len] = treeflen]

TREEBARIntoMEM (dst, len) mem [dst : len] = ~tree[len]
TREEcimpintoMEM (dst, len) mem [dst : len] = treeflen] 17
SCAintoMEM (dst, dlen) mem [dst : dlen] = scafden]

CPY (dst, src, dlen) mem [dst : dlen] = mem/src:dien) 12
SWAP (dst, src, dlen) mem[dst:dlen] <—> mem{src:dien] 6
INC (dst, src, dien) mem [dst : dien] = mem|src:den]+1

DEC (dst, src, dlen) mem [dst : dien] = mem|src:dlen]-1

SHIFTL (dst, src, dlen, n) mem [dst : dien] = mem[srcidien] << n 4
SHIFTR (dst, src, dien, slen, n) mem [dst : dlen] = memisrc:skn] >>n 1,5
INVERT (dst, src, dien) mem [dst : dien] = ~mem [src:dien]

NEGATE (dst, src, dien) mem [dst : dlen] = -mem|src:dlen] 2
MEMpluseqSCA (dst, src, dlen) mem [dst : dlen] = mem[src: dlen] +sca[dien]
MEMplusMEM (dst, Isrc, src, dlen, slen) mem [dst : dlen) = mem[src: dlen]- mem[src:slen] 7
MEMpluseqMEM (dst, src, dien, slen) mem [dst : dien] += mem [src: slen] 7
MEMcimppluseqMEM (dst, src, dien, tmp) mem [dst : dien] += mem]src:dien] 1,9,15
MEMminusMEM (dst, lsre, sre, dlen, slen) mem [dst : dlen] = mem [lsrc:dlen]- memfsreslen] 7
MEMminuseqMEM (dst, src, dien, slen) mem [dst : dien] -= mem]src: slen] 7
MEMpIlusMEM2 (dst, lsrc, src, dlen, slen) mem [dst : dien] = memfisrc:dien] - mem src:slen] 8
MEMpluseqMEM2 {dst, src, dlen, slen) mem [dst : dien] += mem [src: slen] 8
MEM2cIimppluseqMEM2 (dst, src, dien, tmp) mem [dst : dien] += mem]src:dien] 2,9,16
MEMminusMEM2 (dst, lsre, sre, dlen, slen) mem [dst : dlen] = mem [lsrc: dien]- mem|src:slen] 8
MEMminuseqMEM2 (dst, src, dlen, slen) mem [dst : dien] -== mem src:slen) 8
MEMandMEM (dst, lsrc, src, dien) mem [dst : dlen] = memfsrc:dien] & mem [src: dien]
MEMandeqMEM (dst, src, dlen) mem [dst : dien] &= memisrc:den)

MEMorMEM (dst, lsrc, src, dlen) mem [dst : dlen] = memilsrcdien] | mem [src: dlen]
MEMoreqMEM (dst, src, dlen) mem [dst : dlen] = mem|src:dien]

Pixel-planes 5 System Documentation

Chapter III.4 Renderer
Rev 3.4 jge Mon, Feb 18, 1991

§II1.4 — Renderer pg. 25

MEMxorMEM {dst, Istc, src, dlen) mem [dst : dlen] = memfsre:dien] » mem [src: dien]
MEMxoreqMEM (dst, src, dlen) mem [dst : dien] A= mem]src: dien]
MEMpluseqTREE (dst, src, len) mem [dst : len] = mem[src:len] + tree[len]
TREEminusMEM (dst, src, len) mem [dst : len] = teeflen] - mem [src: len)]

MEMandTREE (dst, src, len) mem [dst : len] = memjsrc:len] & tree [len]
MEMorTREE (dst, src, len) mem [dst : len] = memfsrc:ien] | tree flon]
MEMxorTREE '(dst, src, len) mem [dst : len] = mem[src:len] A tree flen]
CRYintoMEM (dst) mem [dst : 1] = carry

111.4.2.5.1—5 Global Instructions

These instructions use the AEO signal to perform global computations, that is, computations
which use all or some of the processing elements in the Renderer.

GMAX (dst, src, dlen, tmp) mem [dst : len] = MAX{mem[src:len] } 9,14
GMIN (dst, src, dlen, tmp) mem [dst : len] = MIN{mem]src:len] } 9,14
I11.4.2.5.1—6 Special Purpose Instructions

These instructions were written to support special tasks for Rendering.

FTECT
FEDGE
SEDGE
FEDGEBAR
SEDGEBAR
EDGE2

STRIPEDGE

MEMEDGE
FCMEMA
SCMEMA
OVFIX
TBLENTRY
SPLAT

0
0
(src)
0
(src)

0

(src, dst)

(dst)

(src, len)

(src, len, aux)

(dst, dlen, tmp)
(dst, src, dlen, slen)
(dst, len, tmp)

enable =
enable =
enzble =
enzble =
encble =
enable &=
carry &&=
enable &&=
memjdst:1] =
mem[dst:1] =
enable =
enable =
if (carry) then

if (mem [src: slen] = index) then

enable = (tree >=0) and

((troef1] ==1)

(tree >=0)

(memfsrc:1] && (tree >=0)
(ree<0)

(memfsrc:1] && (tree < 0)
(troe >=0)

(ree<0)

(e >=0)

memfsrc:1] & (tree < 0)
(tree >=0)

(mem [src : len] <=tree)

mem[aux:1] && (mem [srclenjc=tree)

mem(dst : dlen]= ~0
memjdst : dlen] = entry
mem|dst : len] = tree [len]

10

w W

13

Pixel-planes 5 System Documentation

Chapter III.4 Renderer
Rev 34 jge Mon, Feb 18, 1991

§II1.4 — Renderer pg. 26

‘ Notes:

1) The contents of the memory segment(s) are assumed to represent unsigned integers.
2) The contents of the memory segment(s) are assumed to represent two's-complement signed integers.
3) The contents of the memory segment is assumed to represent an unsigned integer,
and it is zero-extended to the full length of the tree result.
4) These restrictions apply: 0 <=n < dlen
5) These restrictions apply: dlen >=slen -n, 0 <=n < slen.
6) The contents of the two memory segments are interchanged. No temporary register is required.
7) The contents of the 'src' memory segment is assumed to represent an unsigned integer; it is zero-extended
if dlen > slen.
8) The contents of the 'src' memory segment is assumed to represent a signed integer; it is sign-extended
if dlen > slen.
9) 'Tmp' is a memory location for temporary use. It becomes undefined.
10) Mem({dst:1] is written for all pixels, regardless of the value of the Enable register.
'Dst’ and 'src’ may point to the same memory location.
11) it is not normally necessary to explicitly clear the Carry prior to an instruction; this instruction is executed

regardless of the state of the Enable register

12) There is no restriction on overlapping of the 'dst' and 'src’ memory segments.
Qh«b\ 13) Does lookup and write for a table entry in one instruction. Index' is slen LSB's of scalar, 'entry’ is next dlen
kvo L bits of scalar. If index matches mem[src : slen], then entry is written into mem [dst : dlen].

. Only affects enabled pixels, and the Enable register is not disturbed.
‘Q 14) Computes global maximum and minimum over the Renderer region. GMAX computes maximum value of
oV mem([src:dlen] over all Enabled pixels (treating it as an unsigned value) and writes this
C “q ¥ \‘ maximum into mem[dst:dlen] for all Enabled pixels. GMIN behaves similarly.
15) The result is clamped to all 1's if overflow occurs.
V t S\’ \ks 16) The result is clamped to the maximum respresentable positive value if overflow occurs, to the mimimum
% L) respresentable negative value if underflow occurs.
O 17) Mem[dst:len] is clamped to all 1's if the QEE result is larger than the maximum representable value, to 0 if
Q,XL ’ the QEE result is negative.
18) Mem [tmp : len] is for temporary use; it becomes undefined. QEE result is loaded into mem [dst : len] only

if it was non-negative.

I11.4.2.5.2—Transfer Commands

Three commands are available for controlling transfers between the pixel processors and the
backing store. They are executed independently of the state of the Enable register.

BSLOAD(sector) /* initiate a "load" operation, transferring the specified */

Pixel-planes 5 System Documentation Chapter Il1.4 Renderer
Rev 3.4 jge Mon, Feb 18, 1991

§II1.4 — Renderer pg. 27

r sector of backing store into bits 0-31 of pixel memory */
BSSTORE(sector) /* initiate a "store” operation, transferring bits 0-31 */
" of pixel memory into the specified sector of backing store */
BSWAIT() /* wait for conclusion of the active transfer operation, used */
/* when execution of further instructions requires that a Wi
I* previously initiated transfer operation be complete */

For BSLOAD() and BSSTORE(), the argument 'sector' must be in the range 0 - 127.

(Note, for the C simulator, the 'sector’ argument is interpreted as the number of nibbles to transfer, unless the
value is greater than 100 in which case the number of nibbles is 128 * (sector -100); in other words, the
argument 116 causes an entire transfer of 4096 nibbles).

Execution of a BSSTORE() or BSLOAD() command merely intiates a Transfer operation. It
may be followed by ordinary IGC commands, thus allowing overlapping of Transfer
operations with execution of ordinary IGC commands. However, these commands must not
access bits 0-31 of pixel-memory, which are involved in the Transfer operation. If these
addresses are mistakenly accessed, the offending IGC command will not be correctly executed;
however, the Transfer operation will not be disturbed, nor will the contents of pixel-memory
be corrupted.

When it becomes necessary to access bits 0-31, the IGC must halt, pending completion of the
Transfer operation; the BSWAIT() command causes the IGC to wait in a tight loop until any
current Transfer operation is complete. If no Transfer operation is executing, BSWAIT returns
immediately. No BSWAIT is needed prior to initiating another Transfer operation, since the
BSLOAD and BSSTORE commands wait for completion of any pending Transfer before
initiating another.

Other times, it may be necessary to wait for completion of a Transfer operation so that data in
Backing Store can be transmitted to other Ring devices. Again, the BSWAIT command can
used to wait for completion of the BS operation, followed by a command to do a V operation
on the BS Semaphore. Alternatively, the command initiating the Transfer operation can be
immediately followed by a VBSlater command, which causes a V operation on the BS
Semaphore immediately upon completion of the Transfer operation. This means that the IGC
command stream need not contain a BSWAIT and VBS to enable transmission of the data
from the Backing Store Port. Of course, A BSWAIT is still required before any IGC
instructions which access bits 0 - 31.

Pixel-planes 5 System Documentation Chapter IIL4 Renderer

Rev 3.4 jge Mon, Feb 18, 1991

§II1.4 — Renderer pg. 28

I11.4.2.5.3—Commands for Initializing the IGC

On power-up, or if the Ring must be reset (possibly because the IGC is hung with faulty
microcode, invalid opcodes, or waiting on an external handshake signal), it is necessary to
initialize the IGC; this involves loading the microcode store and setting the FBITS register.
It may also be desired to reload some or all of the microcode on-the-fly if more than one set
of IGC microcode is to be used.

Microcode is loaded using the following commands:

RMODEON() /* put the IGC in RMode */
RMODEOFF() /* cause the IGC to exit RMode, and prepare for normal input */
MCWRITE(addr) " load 'sca [32]' ino the specified address in microcode */
MCREAD(addr) I* set the IGC's program counter to ‘addr' (this command is also ~ */

/* used to read microcode memory during chip testing, but this */
/* function is not available during normal Renderer operation) */

' To load the microcode store, the IGC is first put into RMode using two NOOP() commands
followed by an RMODEON() command (the NOOP's are only needed for an "on-the-fly"
microcode reload, to insure that earlier instructions are not corrupted). After a Ring reset,
the IGC is guaranteed to be in RMode already. Next, for every address that is to be loaded,
an MCWRITE() command is issued; note that MCWRITE() is a two word command, so
bits 20 and 21 of the opcode should be set for "C only". Finally, a NOOP() or MCREAD(0)
command is used to reset the IGC program counter, and RMode is exited using an
RMODEOFF() or FBITS() command.

After RMode has been entered using RMODEONY(), it is most important that no commands
other than MCWRITE, MCREAD, and NOOP (but not NOOP2) be issued, until
microcode loading is complete and RMode is exited using RMODEOFF().

Very short initialization sequences (less than 20 words or so of microcode are loaded) after
power-up or Ring reset may not allow the IGC logic sufficient time to flush itself out.

The standard location for the IGC microcode is in the file igc_microcode.h, in an the
initialized array int igc_microcode(], this file is generated by the IGC microcode assembler
asmppS, from microcode source provided by the IGC hardware designer.

Pixel-planes 5 System Documentation Chapter I11.4 Renderer
Rev 3.4 jge Mon, Feb 18, 1991

§III.4 — Renderer pg. 29

‘ Initialization after power-up or Reset should also include an FBITS() command to load the
fractional bits register.
II1.4.2.5.4—Commands for Configuring the Pixel Processors

Two special commands are used for configuring the quadratic expression evaluators of the
EMCs. These are:

SUPCFG (bits) I* shift the first 'bits’ bits of the 1's complement of 'sca’ */
/* into the configuration register of all EMCs */
SEPCFG(chip_no, bits) /* shift the first 'bits’ bits of 'sca’ into the */
/* configuration register of the EMC indicated by 'chip_no' */

Note that the data must be inverted for SUPCFG(). The argument 'chip_no' must be in the
range 0 to 63. The argument 'bits' must be in the range 2 to 32.

. The QEE configuration sequence must be terminated with two NOOP() commands, to insure

that a new set of coefficients is not shifted into the QEE's prior to configuration being
completed.

II1.4.2..5—Semaphore Control Commands

These commands are used for controlling the 2 hardware semaphores, in conjunction with
corresponding commands to the Backing Store Port.

VBS() /* perform a V operation on the Backing Store Port Semaphore */
/* (increment the semaphore counter) */
VBSilater() * perform a V operation on the Backing Store Port Semaphore */
/* after any pending Transfer operation has completed */

The VBS commands are used to increment the BS Semaphore; this usually is used to allow a
BS_PBS command in the BS Port command stream to terminate, thereby allowing subsequent
BS commands to execute.

VBS increments the BS Semaphore immediately.

Pixel-planes 5 System Documentation Chapter III.4 Renderer
Rev 34 jge Mon, Feb 18, 1991

§I11.4 — Renderer pg. 30

VBSlater increments the BS Semaphore upon completion of any Transfer operation (initiated
by a BSLOAD or BSSTORE command) which is in progress; the BS semaphore is
incremented immediately if no Transfer operation is in progress. After a VBSlater is issued, no
additional VBS or VBSlater commands may be issued until a pending Transfer operation is

complete.
PIGC() I* perform a P operation on the IGC Port Semaphore */
/* (wait for the semaphore counter to be non-zero and then */
/* decrement it) */

The PIGC command waits in a tight loop until the IGC Semaphore is non-zero, and then
decrements the semaphore. The IGC Port Semaphore is V'ed by a BS_ VIGC command. It
would typically be used to force the IGC command stream to wait until data to be processed by
the IGC has been loaded from the Ring into backing store, or until data from a backing store
sector has been moved to another Ring device. The two commands immediately following a
PIGC() command must not use the QEEs, because of the dynamic nature of the QEEs and the
fact that the PIGC execution time is unbounded.

‘ I11.4.2.5.6—Miscellaneous Commands

The following are miscellanous commands.

NOOP () /" no operation */
NOOP2 () I no operation (2 word version, includes supplementary opcode) */
HANG () I hangs the IGC in a tight loop (for debugging purposes) */
SENDSTATUS(id) /* send status message to return address given by 'sca [32], */

/" ‘id' specifies status message ID word, except that the 8 LSBs */

/* are replaced by the PAL-programmed board ID number */
INDON () /* turn on IGC "indicator” signal (it is initially off after system reset) */
INDOFF () /* turn off IGC "indicator" signal */

II1.4.2.6—Programming Hints and Pitfalls

The following cautions must be observed when generating Renderer commands. Most of these
are mentioned above. This list summarizes potential mistakes.

Pixel-planes 5 System Documentation Chapter II1.4 Renderer
Rev 3.4 jge Mon, Feb 18, 1991

§III.4 — Renderer pg. 31

1) No error checking is done for command arguments. If illegal values are used, unpredictable
operation will result, including possible hanging of the Renderer.

2) Coefficients of QEE commands are truncated to fixed-point (number of fraction bits is
set using the FBITS command); this truncation is towards 0. The tree result is computed
using these truncated values. The tree result is then truncated to an integer; this truncation
is down, not towards zero.

3) Tree coefficients may normally be re-used, that is, coefficients from the previously sent tree
instruction need not be re-sent if the same coefficient value is to be used (see the IGC
macros). However, coefficients must always be re-sent if microcode is reloaded, or if
the value for FBITS is changed. Also, 'scalar' occupies the same hardware register as
the C tree coefficient, so writing one will overwrite the other.

4) Instructions which use the QEE must not follow 1 or 2 instructions after any instruction
which may take very long to execute, or which alters the QEE configuration; these
include BSSTORE, BSLOAD, BSWAIT, SENDSTATUS, PIGC, SUPCFG,
SEPCFG and others (this is mentioned in the description of such instructions).

Pixel-planes 5 System Documentation Chapter III.4 Renderer

Rev 34 jge Mon, Feb 18, 1991

