IV.2.1 IGC Functional Specification pg. 1

4 1V21 IMAGE GENERATION CONTROLLER
FUNCTIONAL DESCRIPTION

1. OVERVIEW

The IGC is implemented as a fully synchronous monolithic device using the Hewlett-
Packard CMOS14B 0.7 micron CMOS process. The 11.025 x 11.025 mm die is packaged
in a 352-pin Typell ball-grid-array (BGA) package. Nominal clock rate is 100 Mhz (input
port at 125 MHz).

The heart of the IGC is a simple microcode sequencer. This sequencer generates cycle-by-
cycle micro-instructions; it also controls a separate address generator and a coefficient
serializer. In the EIGC, the micro-instruction outputs drive the ALU micro-instruction
inputs to the EMCs, the address outputs drive the pixel-memory address inputs to the
EMCs, and the coefficient serializer outputs drive the inputs to the linear expression
evaluators on the EMCs. In the TIGC, the micro-instruction outputs drive the micro-
instruction inputs to the TASICs, the address outputs drive the module select inputs to the
TASICs, and the coefficient serializer outputs are unused.

The 32-bit input ports of the two IGCs are connected together, and they accept a single
stream of commands; an opcode bit specifies the intended IGC for each command, and a
,. personality pin distinguishes the two IGCs. Commands in the input stream are variable-
length in format; they are parsed into a common format by a Stream Parser. Next, they are
deposited into one of a parallel pair of FIFOs, one for normal rendering commands and the
other for commands to initiate image composition operations (which are executed
asynchronously from normal commands). A set of semaphores allows interlocking of
command sequences between the two IGCs and between the two FIFOs on each IGC.

Finally, instructions pass from the FIFOs into the sequencer, where they are executed. The
sequencer contains 1024 words of 64-bit wide microcode memory. Several loop counters,
initialized from fields in the instruction opcode, allow variable length loops. Address
outputs are generated by a set of 3 address counters (plus a refresh counter), which also are
initialized from fields in the instruction opcode and controlled by the microcode sequencer.
The coefficient serializer consists of a set of shifters which convert the various coefficient
formats supplied with a command into a byte-serial 2's-complement fixed-point
representation; these coefficient shifters also are controlled by the microcode sequencer.
The Image Generation Controller (IGC) is a custom VLSI controller chip for the PixelFlow
Graphics Engine; two IGCs, loaded with different firmware, are used to control the
rasterizer core on each PixelFlow board. The EMC Control IGC (EIGC) supervises the
byte-serial, SIMD execution of instructions by the array of processing-elements contained
on the enhanced memory chips (EMC's) of the rasterizer core; it directly generates all EMC
inputs, except for the power, clock, and reference signals, the control signals and data for
the local port, and the data for the image composition port. The TASIC Control IGC
(TIGC) controls the texture/frame buffer memory and the texture-ASICs (TASICs), which
are used to connect the EMCs to this external memory. Both IGCs also control other

PixelFlow System Documentation IV.2.1 Image Generation Controller Chip
Rev 6.0 jge 11/17/97

AE
AD
AC

AB

IV.2.1 IGC Functional Specification pg. 2
miscellaneous circuitry in the rasterizer core
II. FUNCTIONAL SPECIFICATION
The IGC pinout is shown in Figure 1:
1 2 3 4 7 8 3 10 u 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Instr | Instr | Instr | instr Instr | Addr
14H 15H 17L 17H 21L OH
Instr | Instr | Instr Addr
15L | 16H | t18H oL
Instr | Instr Instr | Instr | Instr Addr | Addr
L 20H | 22L | 23H 2L
Instr | Instr | Instr Addr
o6L osL 18L 20L | 22H 3L
Addr | Addr | Addr
3H 5L 6L

Test ExtOp | ExtOp
3H 3H 4H
GTL ExtOy
Ref1 | SH | stoH | =GP
Test | Test
1H | 2H | StH
Test
4H

IC
L2RL

iCL2R
St1H

TRST

iIc
R2LH

Bottom (Open Cavity) View

PixelFlow IGC 1.0
352 Package Footprint

TrBoH

VRASeq
TeASL "o
VTSeq
TrA3H | TrAdH InH
TrA2H | TrA4L
TrAOH | TrA2L | TrA3L | TrASH
SDat | SDat | SDat SDat | SDat | SDat | SDat o . | ST [
OtH | 06H 11H 19H | 23H | 27H | 31H |77 FullH E
ICL SDat | SDat | SDat SDat | SDat | SDat ECIkH
GoH 02H | O7H 12H 22H | 26H | 30M
ICR SDat SDat | SDat SDat | SDat ECIkL
GoH 08H 18H | 21H 29H | 28H
SDat | SDat SDat | SDat SDat SDat SDat | SDat
04H | O5H 09H 10H 17H 20H 24H | 25H

20

22

23

24

25

PixelFlow System Documentation

IV.2.1 Image Generation Controller Chip
Rev 6.0 jge 11/14/97

26

IV.2.1 IGC Functional Specification pg. 3

The following table summarizes the IGC pins and their functions.

SIGNAL NAME | # | LEVELS | TIMING DESCRIPTION

GND 29 — — Ground pins for core circuitry, input pads,
LVTTL output pads, ECIk buffer, and

_ ESD protection.

vdd 29 — —_ Power supply for core circuitry, input
pads, LVTTL output pads, ECIk buffer,
and ESD protection. Nominally 3.3 volts.

GND_SCIk 2 — — Isolated power and ground for the SClk

Vdd_SClk clock-aligner. Nominally same as Vdd
level (3.3 volts).

GND_BD 4 — — Signal returns for bi-directional signalling
pads (IC[LR][Rdy,Go]H).

Vdd_BD 1 — — Isolated power for the bi-directional
signalling pads. Nominally same as Vdd
level (3.3 volts).

IRef 1 — — Current reference signal for bi-directional
signalling pads. Nominally 5 milli-amps.

Rref 2 — — Reference resistor for the bi-directional

GND_BDRRef signalling pads. Nominally 50 ohms.

GND_LDRef 1 — — Signal return for GTL reference signal.

GTLRef{1:2} 2 — — GTL reference signals.

GND_LD 31 — — Signal returns for GTL signalling pads.

TCK, TDI,TMS 5 LVTTL TCK JEDEC standard JTAG boundary-scan

TRST, TDO _ port.

ECIkH 2 | differential | defines | Input port clock, differential pair.

ECIKL PECL EClk ResetH, SLoadH, and SDat[0:31]H

domain | inputs must be synchronous with this
clock. Nominally 125 MHz.

SCIkH 2 | differential [defines | Salphasic clock, differential pair. Other

SCIKL custom SClk inputs and all chip outputs are synchronous

(see specs) | domain | with this clock. Nominal frequency is 100
MHz.

I1GCID 1 LVTTL static Personality pin, to distinguish between the
two IGCs. Normally set to logic-zero on
the EIGC, set to logic-one on the TIGC.

ResetH 1 LVTIL EClk Reset signal, asserted for two or more

input ECIk cycles to initialize device.

SLoadH 1 LVTIL EClk Data strobe for input data on

input SDat{0:31}H inputs.
SDat{00:31}H [32| LVTIL EClk Input data pins, for command input.

input Ignored if SLoadH = 0. Bit 00 is LSB.
St{0:2}H 3 LVTIL SClk External condition codes, testable as

input branch conditions in microcode sequencer.

PixelFlow System Documentation

IV.2.1 Image Generation Controller Chip
Rev 6.0 jge 11/14/97

IV.2.1 IGC Functional Specification pg. 4

[Test{0:5H 6 LVTTL SCIk Test-mode select. Multiplexeschipinternal
input state onto ExtOp{0:7}H outputs. Set
low for normal operation.
VRSeqInH 2 LVTTL SCIlk Semaphore ‘V’ signals for RFIFO and T
VTSeqInH input FIFO, from other IGC.
ICLRdyH 2 current SClk Bi-directional READY chain for image-
ICRRdyH mode bi-dir’al | compostion controller.
ICLGoH 2 current SClk Bi-directional GO chain for image-
ICRGoH mode bi-dir’al | compostion controller.
ClkOutl 2 LVTIL on-chip | SCIk outputs, for testing, and driving
ClkOut2 SClk other parts.
SRFullH 2 LVTTL SClk Almost-full signals for input FIFOs.
STFullH output
IdleH 1 LVTTL SClk “Idle” signal; asserted when chip
output quiescent.
ICL2R{HL} 4 | GTL-pair SCIk GTL-pair “run” outputs: strobe image-
ICR2L{HL} output | composition “left-to-right” and “right-to-
left” paths.
ICL2RSt{0:1}H | 4 LVTIL SCIlk Two-bit status code for image-composition
ICR2LSt{0:1}H output L2R and R2L paths.
VRSeqOutH 2 LVTTL SClk Semaphore ‘V’ signals for RFIFO and T
VTSeqOutH output | FIFO on other IGC.
SemaQOvfH 1 LVTTL SClk Semaphore overflow signal; logical-OR of
output overflows from 4 semaphore counters.
SOvfH 1 LVTIL SClk Overflow signal for FIFOs; logical-OR of
output overflows from RFIFO and TFIFO.
Instr{00:23JH |48 | GIL-par SCIk GTL-pair sequencer micro-instruction
Instr{00:23}L output | outputs.
ExtOp{0:7}1H 8 LVTTL SClk External-operation outputs; also used with
output Test{0:5}H to view chip internal state.
Addr{0:8}{HL} | 18| GTL-pair SCIk GTL-pair address outputs.
output
TrSt{HL} 2 | GTL-pair SClk GTL-pair LEE data strobe.
output
TrLSB{HL} 2 | GTL-pair SClk GTL-pair LEE LSByte indicator.
output
TrA{0:7}{HL} |[16] GTL-pair SClk GTL-pair A-coefficient byte-stream
output (bit 0 is LSB).
TrB{0:7}{HL} |16 GTL-pair SClk GTL-pair B-coefficient byte-stream.
output
TrC{0:7}{HL} |16 | GTL-pair SCIlk GTL-pair C-coefficient byte-stream.
output

PixelFlow System Documentation

IV.2.1 Image Generation Controller Chip
Rev 6.0 jge 11/14/97

IV.2.1 IGC Functional Specification pg. 5

. IV.3.2—2 External Interface Specifications

Operating Conditions

Parameter Min Nom Max | Unit

Vdd Power supply voltage 3.0 3.3 3.6 Volts

VIHH Logic-HI input voltage, LVTTL inputs 0.4 Volts

VIL Logic-LO Input voltage, LVTTL inputs 2.8 Volts
Common-mode voltage, ECIk{HL} inputs 1.2 Vdd- | Volts

0.9

Differential signal peak-peak, ECIk{HL} inputs 1.0 5.0 Volts
Common-mode voltage, SCIk{HL } inputs 2.2 Voltsl
Differential signal peak-peak, SCIk{HL} inputs 0.8 Voltsl

TA Ambient air temperature °C

TJ Junction temperature °C

! With clock-aligner enabled; with clock-aligner in bypass mode, input levels must be LVTTL.

DC Electrical Characteristics (Vdd = 3.3 volts)
Parameter Conditions Min | Nom | Max | Unit
' IL Input leakage current, all inputs except | 0< Vin< Vdd 1 pHAl
TDI, TMS, TRST
PD Power dissipation SCIk,EClk 2 3 Watt
= 100 MHz

' TDI, TMS, and TRST have internal pullup resistors to Vdd, which source up to 150 pa at Vip = Ov.

Timing Requirements
Parameter Min Nom Min Unit
tP (ECIk) Clock period (EClk) 8 ns
tPH (ECIk) Clock HI period (ECIk) 3.5 ns
tPL (EClk) Clock LO period (ECIk) 3.5 ns
tP (SClk) Clock period (SCIk) 10 1.5¥ECIk | nsl
tPH (SCIK) Clock HI period (SCIk) 4 ns
tPL (SCIk) Clock LO period (SCIk) 4 ns
ts (TCK) Setup time, TDI and TMS 10 ns2
th (TCK) Hold time, “ 10 ns2
ts (ECIk) Setup time, ResetH, SLoadH, SDat[00:31]H 0.5 ns3
th (ECIk) Hold time, “ 2.5 ns3
. ts (SCIk) Setup time, St{0:2}H, Test{0:5}H,V[RT]SeqInH 2.0 ns4
PixelFlow System Documentation IV.2.1 Image Generation Controller Chip

Rev 6.0 jge 11/14/97

IV.2.1 IGC Functional Specification pg. 6

. | b sciv) | Hold time, “ 25 | | | nst |

! In other words, ECIk frequency can be no higher than 1.5 times SCIk frequency (ask Eyles for exceptions).
2 Referenced to rising edge of TCK.
? See figure:

ts (ECIk) th (ECIk)

4 See figure:

ts (SCIk) th (SClk)
‘ Table values are with clock-aligner enabled.
Add X ns to max times with clock-aligner in bypass mode.

Timing Characteristics
Parameter Conditions Min | Nom | Max | Unit
tp(TTL) Propagation time, LVTTL outputs No Load nsl §
tp(TTL) Propagation time, LVTTL outputs CL=5092 to 1.4v nsl
tp(GTL) Propagation time, GTL outputs No Load nsl
tp(GTL) Propagation time, GTL outputs CL=50Q to 1.2v nsl
tp(TDO) Propagation time, TDO output ns3
tp(ClkOut) | Propagation time, ClkOutl and ClkOut2 | CL=1MXQ Il 9pf 1.0 1.5 2.0 | ns2
tp(CIkOut) | Propagation time, ClkOutl and ClkOut2 | 1002 toGND I 1.3 1.8 2.4 | ns2
25pfto 1.4 v

! With SCIk clock-aligner enabled. Add X ns to max values with clock-aligner in bypass mode.

2 Measured from positive-going crossing of SCIkH/SCIKL to rising edge of ClkOut{1:2},
with clock-aligner enabled. Add X ns to max values with clock-aligner in bypass mode.

3 Referenced to falling edge of TCK.

PixelFlow System Documentation IV.2.1 Image Generation Controller Chip
Rev 6.0 jge 11/14/97

IV.2.1 IGC Functional Specification pg. 7

Timing of External Interface Signals

The IGC is controlled by two clocks, which are asynchronous with respect to each other.
One is defined by the differential input pair SCIkH/SCIKL, and the other is defined by the
differential input pair ECIKH/ECIKL. For each clock, the “primary edge of CIK” is
defined as the point at which CIkH goes high with respect to CIKL. All outputs are
synchronous with respect to SCIKH/SCIKL, with propagation referenced to the primary
edge of SCIk. Chip inputs are synchronous with respect to one of the two clock regimes,
as specified above; setup and hold times are specified with respect to the primary edge of
the appropriate clock.

Input Protocol

The IGC accepts a stream of 32-bit instruction words. An instruction word is written by
asserting SLoadH with the desired data present on SDat[0:31]H. IGC commands are
variable in length, consisting of 1 to 8 instruction words (discussed below). Each
command is parsed and written into one of the two input FIFOs (the RFIFO or the TFIFO);
each FIFO entry consists of a single command (regardless of its size), as opposed to one
instruction word. Each FIFO has a programmable almost-full flag, the SRFullH and
STFullH outputs, for the RFIFO and TFIFO resepectively. When either of these goes
high, this means that the corresponding FIFO has reached its “fullness limit” (set using a
special command described below). The device feeding commands to the IGC must
monitor SRFullH and STFullH, to avoid oveflowing either FIFO. There is a pipeline
delay between the input port and S{RT}FullH, as shown in Figure 2.

ECIk cycles SCIk cycles
A J\
4 NI N
| | | | | | U U |
SLoadH |]—I—\ | I | I I | 1 | 1
| 4 | | | | | | | 1 |
SDat[00:31]H D,
CmdH (ECIK) ! : 'I_\ : : : ' : :
CmdH (SCIk) | | | 1 II——\ I |] | | 1
L 'l L b 3 L L 1 1 L L d
FIFO counter Y v v v b { v '
S{RT}FullH k t 1 } 1 1 ¥ t x +
soviH | h I I [[[[I —t
i '

1 1
Figure 2: Timing of Full and Overflow Signals

In this figure, the SLoadH pulse represents writing the single instruction word of a one-
word command (see below). The FIFO write-port is in the ECIk domain, and the pulse
CmdH(ECIK) represents the command being written into the FIFO. This write command
is synchronized into the SClk domain andbecomes CmdH(SCIK); there is some
uncertainly in this synchronization, depending upon the relative timing of the EClk and
SCIk edges. Three SCIk cycles later, the FIFO counter changes value, and two cycles
after that the S{RT}FullH flags may change and the SOvfH oveflow flag may go high.

PixelFlow System Documentation IV.2.1 Image Generation Controller Chip
Rev 6.0 jge 11/14/97

IV.2.1 1GC Functional Specification pg. 8

In the worst-case, a continuous stream of one-word commands can be written into the input
port. Thus, by the time the almost-full flag goes high, there may have been 8 additional
commands written into the input port, perhaps more if the ECIk rate is higher than the
SCIKk rate. By the time the inputting device reacts to the high-going transition of the
almost-full flag and ceases inputting commands into the IGC, even more additional
commands may have been written. Thus, the fullness-limits must be set considerably
below the full size of each FIFO, to avoid overflows.

An overflow-flag, SOvfH, provides some indication of a FIFO overflow; once it goes
high, SOvfH remains high until ResetH is asserted. Unfortunately, this overflow-flag is
unreliable: overflowing a FIFO does not necessarily result in SOvfH going high, again
due to the pipeline delay. For example, if the FIFO is full, and a new command is written
into the FIFO, this oveflows the FIFO and corrupts data; but if a command is read from the
FIFO during the pipeline delay before the FIFO counter is incremented, then SOvfH is
never asserted because the counter never oveflows.

Command Formats

Commands consist of an opcode followed by optional ABC coefficients. The opcode and
coefficients may be 32-bit, or 64-bit written as two separate words. The format of the
opcode is shown in Figure 3.

PixelFlow System Documentation IV.2.1 Image Generation Controller Chip
Rev 6.0 jge 11/14/97

IV.2.1 IGC Functional Specification pg. 9

‘ 1 Word

31 30 29 28 27 26 2524 23 22 21 19 18 10 9 0

AdAA A A A

DstAddr (‘destination’ MCAddr (starting microcode
pixel-memory address) sequencer address)

LpCnt1 (3-bit starting value
for loop counter 1)

long opcode — g

cmd for TFIFO

cmd for TASIC sequencer

meta command

FBytes (fractional bytes):

_ Float bit: number of fractional bytes for float or double coeffs
0: integer coeffs this value, minus 1, is also loaded into FBytes counter

1: float or double coeffs

L Double bit (coeff size):
0: 32-bit coeffs
1: 64-bit coeffs

Linear bit (linear expression evaluator mode):
0: constant mode, F(x,y) =C
1: linear mode, F(x,y) = Ax + By +C

. Coef bit (coefficients):
0: instr has no coeffs
1: instr has coeffs (C only if Bit26 = 0; A,B, and C if Bit26 = 1)
P Word
31 23 22 21 13 12 7 6 3 2]

) + x

AuxAddr (auxiliary SrcAddr (source LpCnt2 (4-bit starting value
pixel-memory address) pixel-memory address) for loop counter 2)

LpCnt3 (6-bit starting value

NoBase bit
for loop counter 3
(inhibits base-offset or loop counter 3) config field

register) 000: no-op
001: load PMA base registers
010: load coef offsets
011: load PMA base and coef offsets
100: load C into microcode store
101: reset Refresh counter
110: turn RMode off
111: turn RMode on

Figure 3: Opcode Formats

PixelFlow System Documentation IV.2.1 Image Generation Controller Chip
Rev 6.0 jge 11/14/97

IV.2.1 IGC Functional Specification pg. 10

The first word of an instruction is always the I-Word, the low-order 32-bits of the opcode.
The I-Word determines the number of additional instruction words, and their meaning, as
described below.

Bits 0-9 (the MCAddr field) define the entry point in the microcode sequencer for
execution of the instruction.

Bits 10-18 (the DstAddr field) specify the destination pixel-memory operand

Bits 19-21 (the LpCnt! field) specify the 3-bit initial count value for Loop Counter
1.

Bits 22-23 (the FBytes field) specify the number of fractional bytes (0 to 3) when
floating-point or fixed-point LEE coefficients are converted to fixed-point form for
the EMCs. This field is also used as the initial count value for the 2-bit FBytes
counter, but its value is decremented as it is loaded into the counter; thus the starting
count value is the FBytes field minus 1, modulo 3.

Bit 24 (the Float bit) is set to 1 to indicate the the LEE coefficients are floating-
point, to 0 if they are integer.

Bit 25 (the Double bit) is set to 1 to indicate the the LEE coefficients are double-
length, that is, if integers they are 64-bits rather than 32-bits, and if floating-point
they are 64-bit double-precision rather than 32-bit single-precision.

Bit 26 (the Linear bit) is set to 0 to indicate the instruction has only a C coefficient
and the LEE uses constant mode (F(x,y) = C), or 1 to indicate the instruction has
ABC coefficients and the LEE uses linear mode (F(x,y) = Ax + By + C

Bit 27 (the Coefs bit) is set to 1 to indicate the instruction has coefficients. The type
of coefficients and their use by the LEE is defined by the Linear, Double, Float, and
FBytes fields. If this bit is 0, bits 19-26 are interpreted as a one-byte immediate
operand which can be passed through the LEE.

Bit 28 (the Meta bit) is set to 1 to indicate this is a meta-command. If this bit is set,
the other bits of the opcode are interpreted in an alternate fashion. See “Meta
Commands” below.

Bit 29 (the ETSel bit) is set to O to indicate that the instruction is for the EIGC
(assumes input IGCID is logic-zero), to 1 to indicate that the instruction is for the
TIGC (asumes input IGCID is logic-one)

Bit 30 (the TCmd bit) is set to O to indicate that the instruction should be placed into
the RFIFO, or to 1 to indicate that the instruction should placed into the TFIFO.

Bit 31 (the Long bit) is set to 1 to indicate the opcode is 64-bits rather than 32-bits.

The number and ordering of additional words in the instruction are defined by several of the
fields in the low-order word of the opcode. When set, the Long bit (bit 31) indicates that the

PixelFlow System Documentation IV.2.1 Image Generation Controller Chip

Rev 6.0 jge 11/14/97

IV.2.1 IGC Functional Specification pg. 11

next word is the high-order word of the opcode; the Coef bit (bit 27 = 1) indicates that the
instruction has instruction has coefficients; the Linear bit (bit 26 = 1) indicates that the
instruction has three coefficients (ABC) rather than one (just C); the Doublebit (bit 25 = 1)
indicates that the coefficients are double-size (64 bits) instead of single (32-bits). This
information can be summarized as follows:

(5

I-Word Bit Additional Command Words Total

31 27 26 25 (Ordered) Words
0 0 X X | — 1
1 0 X X | P 2
0 1 0 0 C 2
1 1 0 0 P, C 3
0 1 0 1 C0, C1 3
1 1 0 1 P, CO, C1 4
0 1 1 0 A,B,C 4
1 1 1 0 P, A, B, C 5
0 1 1 1 A0, Al, B0, B1, CO, C1 7
1 1 1 1 P, AQ, Al, B0, B1, C0, C1 8

In this table, P refers to the upper 32-bits (i.e.: the P-word) of the opcode; A, B, and C
refer to the single 32-bit word of a 32-bit integer or single-precision float coefficient; A0,
BO, and CO refer to the first 32-bit word of a 64-bit integer or double-precision float
coefficient; and Al, BI, and CI refer to the second word of a 64-bit integer or double-
precision float coefficient. If the Endian bit in the Interface Control Register (see below) is
0, A0, BO, or CO should be the low order 32-bit word of the 64-bit coefficient, and A1,
BI, or CI should be the high-order 32-bit word of the coefficient. If the Endian bit is 1,
then the ordering of the high-order word and low-order word are reversed.

If the Long bit is set, the second word (the P-Word) of the instruction contains the
supplementary 32-bits of the opcode; if not, the upper 32-bits of the opcode are all set to 0.
The format of the high-order word of the opcode is also shown in Fig xxx. The bits are
interpreted as follows:

Bits 0-2 (the Cfg field), is used to perform configuration functions in the IGC.
These bits cause the following actions:

[P-Word Bit Action
2 1 0
0 0 0 | no-operation
0 1 1 load address base-offset registers
0 1 0 | write A and B coefficients to Serializer offset registers
0 1 1 load address base-offset registers and Serializer offset registers
1 0 0 write C coefficient to microcode store address specified by MCAddr
1 0 1 clear address refresh counter
1 1 0 | cause Sequencer to exit RMode
1 1 1 cause Sequencer to enter RMode

PixelFlow System Documentation IV.2.1 Image Generation Controller Chip
Rev 6.0 jge 11/14/97

IV.2.1 IGC Functional Specification pg. 12

Bits 3-6 (the LpCn12 field) specify the 4-bit initial count value for Loop Counter 2.
Bits 7-12 (the LpCnt3 field) specify the 6-bit initial count value for Loop Counter 3.
Bits 13-21 (the SrcAddr field), specify the source pixel-memory operand.

Bit 22 (the NoBase bit) inhibits applying the base-offset register to the pixel-
memory operands (see below).

Bits 23-31 (the AuxAddr field), specify the auxiliary pixel-memory operand.

Meta commands. When IWord bit 28 (the Meta bit) is set, the command is a
special type of command called a meta command; for “meta” commands, some of
the Iword and Pword opcode bits have an alternate function, as follows:

I-Word Action When Meta Command is Executed
Bit (I-Word bit 28 must also be set)
26 This command is a special type of meta command called an ignore command.

Ignore commands are not loaded into either FIFO; they are used to pad the
instruction stream and to load the Interface Control register.

25 This modifies the meaning of some of the other meta command opcode bits.
When bit 26 is set, it enables loading of the Interface Control Register, used for
setting the Endian bit and the FIFO fullness limits. For semaphore ‘P’
commands, it causes control to defer to the other FIFO if the’P’ command causes

blocking of the FIFO.

24 Causes loading of the alive and ends registers (for the Image Composition ready/go
controller.

18 Causes arming of the R2L path in the ready/gp controller.

17 Causes arming of the L2R path in the ready/gp controller.

16 Causes the FIFO to block until any current Image Composition transfer operation
is completed.

15 Causes a ‘V’ operation (increments the semaphore counter) on the sequencer-

blocking semaphore for the corresponding FIFO in the other IGC. This asserts a
one-cycle pulse on the VRSeqOutH or VISeqOutH output pin.

14 Causes a “V’ operation (increments the semaphore counter) on the fifo-blocking
semaphore for the other FIFO.

13 Causes a ‘P’ operation (blocks until the semaphore counter is non-zero and then
decrements it) on the sequencer-blocking semaphore.

12 Causes a ‘P’ operation (blocks until the semaphore counter is non-zero and then

decrements it) on the fifo-blocking.
11 Causes the FIFO to become the favorite FIFO.
10 Causes the other FIFO to become the favorite FIFO.

P-Word Action When Meta Command is Executed
Bit (I-Word bit 28, and I-Word bit 17, 18, or 24 must also be set)
7 This value is loaded into the alive register if I-Word bit 24 is also set.
PixelFlow System Documentation IV.2.1 Image Generation Controller Chip

Rev 6.0 jge 11/14/97

IV.2.1 IGC Functional Specification pg. 13

8 This value is loaded into the left end register if I-Word bit 24 is also set.

9 This value is loaded into the right end register if I-Word bit 24 is also set.

13 This value is loaded into the L2R path first register if I-Word bit 17 is also set.
14 This value is loaded into the L2R path last register if I-Word bit 17 is also set.

15-19 This value is the byte-count for L2R path transfers (loaded into counter if Iword
bit 17 also is 1); bit 15 is LSB.

23 This value is loaded into the R2L path first register if I-Word bit 18 is also set.
24 This value is loaded into the R2L path last register if I-Word bit 18 is also set.
25-29 This value is the byte-count for R2L path transfers (loaded into counter if Iword

bit 18 also is 1); bit 25 is LSB.

Coefficients. The opcode word(s) are followed by optional coefficient words as shown
above in Table X.

Use of these coefficients by the LEE, and their data types, are specified by the Coef,
Linear, Double, and Float bits in the IWord, as shown in the following table:

N
Bit Bit Bit Bit F(x,y)= Coefficients
26

[\
~3
[
wn
(8]
£

C = byte defined by bits 26-19
C = 32-bit integer

C = single-precision float

C = 64-bit integer

C = double-precision float

Ax + By + C | ABC = 32-bit integers

Ax + By + C | ABC =single-precision floats [
Ax + By + C | ABC = 64-bit integers |
Ax + By + C | ABC = double-precision floats l

o
>
>
>

(ol (o} (o] (o} (@]

e N Y Y Y I O Y
=l=l=l=lololeole
—l=lolo=l=io|e
=lol=lo|=|lo|=|e

When bit 26 is set, the LEE computes the full bi-linear expression; if bit 25 is zero, the LEE's
compute just the constant portion, C.

Within the IGC, the 32-bit integer type is converted to 64-bit integer type by sign-
extension, and the single-precision float type is converted to a double-precision float using
a standard single-to-double conversion. Coefficients are converted to byte-serial fixed-point
numbers with adjustable numbers of fractional bytes, before being use to compute linear
expressions (see below).

Single-precision floats should conform to the standard IEEE format, in which bits 0-23
represent the fractional part of the mantissa with understood 1 to the left of the radix point,
bits 23-30 represent the exponent in excess-127 form, and bit 31 is the sign-bit (the
representation is sign/magnitude). Double-precision floats should conform to the standard
IEEE format, in which bits 0-51 represent the fractional part of the mantissa with
understood 1 to the left of the radix point, bits 52-63 represent the exponent in excess-1023
form, and bit 63 is the sign-bit (the representation is sign/magnitude).The IEEE standards

PixelFlow System Documentation IV.2.1 Image Generation Controller Chip
Rev 6.0 jge 11/14/97

IV.2.1 IGC Functional Specification pg. 14

specify several exceptions, with exponent fields either all O's or all 1's; the exceptions in
which the exponent field is all zeroes (zero, and denormalized numbers) are treated as zero,
and the exceptions in which the exponent field is all ones (NANs and infinities) are also
treated as zero. Because the coefficients are converted to fixed-point numbers, precision is
often lost . If the exponent is less than -8*fbytes, the fixed-point equivalent is zero. If the
exponent is very large, the significant bits of the mantissa may be shifted so far to the left
that the coefficient is effectively zero. The precision lost is determined by the magnitude of
the coefficient and the setting for the "number of fractional bytes" (FBytes field of the low
opcode). The floating-point value is truncated, not rounded, when the conversion is made,
and the truncation is towards zero. Further, although FBytes fractional bit of the
coefficients are generated, the corresponding fractional bytes of the LEE results are not
available. Only the integer portion of the LEE results are available at the pixel-ALU and
pixel-memory. Thus, two truncations occur when floating-point coefficients are supplied to
the EMC's, which are essentially integer devices: (1) the coefficients are truncated to fixed-
point, (2) the LEE result is truncated downwards (not towards zero) to an integer.

Semaphores

Both have a digital filter which ignores consecutive assertions; that is, the signal must have
been low on the previous cycle for an assertion on the current cycle to affect the
semaphore.

Loading the Interface Control Register

After reset, the IGCs input interface is in an undefined state. The “fullness” limits, that is,
the comparison values for the “almost-full” flag outputs SRFullH and STFullH, are
undefined. Each flag is asserted only if its respective FIFO contains a number of
commands greater than this fullness limit; since the FIFO counters are initialized to zero on
reset, the full-flags are guaranteed to be de-asserted. However, since the fullness limits are
undefined, entering a single command can potentially cause SRFullH or STFullH to be
asserted, thereby hanging any software or hardware interface that requires the full-flags to
be de-asserted before writing additional commands to the IGC. Thus, immediately after
reset is over (and ResetH is de-asserted), the Interface Control Register should be loaded,
using the command:

I| oJo[54]1]o]1]1]oJo[o]oJo]olo]o|E| TIT] T[T TIT| TIT| TIR|RIR| R|R| RIR|
31 28'27 24'23 2019 16'15 12711 87 4" 3 0

Bit 29 specifies which IGC the command is for. Bits 28 and 26 specify an “ignore” type

command, which is not written into either FIFO, so bit 30 is ignored. Bit 25 enables

loading the Interface Control Register (for an “ignore” type command). Bits 7 - 15 specify

the “fullness” limit for the TFIFO (bit 7 is LSB) and bits O - 6 specify the “fullness” limit

for the RFIFO (bit 0 is LSB). Bit 16 specifies the “endian-ness” for 64-bit coefficients: if it

is 1, the high-order 32-bit word is the first of the two 32-bit command words of a 64-bit

coefficient; it is ignored except for commands containing 64-bit coefficients. The Interface

Control Register can be reloaded at any time, regardless of whether the IGC is in RMode

PixelFlow System Documentation IV.2.1 Image Generation Controller Chip
Rev 6.0 jge 11/14/97

Iv.al

IGC Functional Specification pg. 15

or not.

Resetting the IGC, and RMode

The reset signal, ResetH, must always be asserted after the IGC is powered-up, or to
reset a hung IGC; the reset pulse should be at least two ECIk cycles long. Reset initializes
the Input Interface and resets the RFIFO and TFIFO. Reset also puts the Sequencer into a
special mode called RMode, used for writing and reading the microcode store.

During RMode, the micro-instruction outputs Instr{00:23}{HL} are de-asserted. The
address outputs Addr{0:8}{HL} cycle through all 512 possible address values, the
initial value is undefined after Reset. The external operation outputs ExtOp{0:7}Hf also
are de-asserted, provided the test-mode inputs Test{0:5}H are zero; otherwise, the
ExtOp{0:7}Hf outputs view internal state (as described below).

In RMode, the Sequencer always accepts new commands immediately,and executes them
in a single clock cycle. The microcode sequencer is forced to the starting address of the
new command, and is held there until a new command arrives. This behavior allows

writing and reading of the Sequencer microcode store, as shown below.

The Sequencer can also enter RMode by executing the command:

1 1A

olo]/ofo

olojojo

olo/ofo

ojojolo

olo]lofo

ojofolo

ojo}o]o|

p{olojojo

olo]ojo

ololo]o

olo]olo

olo/o0]o0

ololo]o

olo|o]0

o[1]1]1]

31 28

27 24

23 20

19 16

15 12

11 8

7 4

3 0

where bits 29 and 30 specify which IGC, and which FIFO on that IGC, the command is

meant for.

After being loaded with microcode, the Sequencer exits RMode by executing the command:

1 [1DAAlo

olo|o]o

ololo]o

ojo/o]jo

ojofojo

olofojo

ojofo]o

ofofo]o]

p(olojolo

ojofofo

ololo]o

ofo/ofo

ofojolo

ojofofo

olojofo

of1/1]o]

31 28

27 24

23 20

19 16

15 12

11 8

7 4

3 0

This causes the sequencer to exit RMode and begin executing microcode at address 0.

Loading the Microcode Store
To load microcode into the sequencer, the sequencer is first put into RMode, as described

above.

Each microcode location is loaded using a 4-word command:

PixelFlow System Documentation

IV.2.1 Image Generation Controller Chip
Rev 6.0 jge 11/14/97

Iv2l1

IGC Functional Specification pg. 16

1 [1]Jo[0

1|0/ 1]0

olo]o]o

olo]olo

ojojofo

0[0[m[m

MiM|M[M

P(o]ojo]o

ofojojfo

ojofolo

olo]olo

ojojofo

o/ojofo

olofo]o

o[1]o]0]|

HEIEEEEEEEEEEEEEEEEEEEEEEEEEEEE

ci [11111 HEEEEE HEEEE

[[] [[1
3 1 8

31 28'27 242 20°19 16°15 12°1 7 4" 3

Bits O - 9 of the I-opcode specify the microcode store location to be written. Bits O - 2 of
the P-Word specify the “write microcode store” code for the Cfg field. The two C-
coefficient words specify the 64-bit microcode word to be loaded; the ordering of the hi-
and lo-order words is defined by the Endian bit in the Interface Control Register. This
command can only be specified for the RFIFO, since it contains coefficients.

After all desired microcode locations are loaded, the microcode can be read back by sending

a command:
olo]ofo]ojojolo]o]of[ojo[o]olo]o]ofo]m[M|m|M|m]m

1 [oDAA0
31 28'27 24°23 20°19 16°15 12°1 8 7 4° 3

Bits O - 9 specify the microcode store location to be read. Assuming the sequencer is in
RMode, this microcode store location is repeatedly read until a new command is available.
The test port, input pins Test{0:5}H and output pins ExtOp{0:7}H, is used to read the
current microcode word (see below).

After microcode is loaded, the Sequencer can be taken out of RMode (see above), and it
begins executing microcode at address 0.

Using the Test-Mode Port

For normal operation, the test-mode inputs Test[S5:0]H are low, and the ExtOp[7:0]H
outputs are generated directly by bits in the currently executing Sequencer microcode word
(or held low while the Sequencer is in RMode). By setting Test[5:0]H to other values,
the ExtOp[7:0]H outputs provide visibility of internal state within the IGC, as shown in
Table:

(P __ _
Test{5:0}H Data Output on ExtOp{7:0}H I
5 4 3 2 1 0 |
0 0 X X X X normal operation I
0 1 0 d2 dl d0 diagnostics (see table)
0 1 1 b2 bl b0 | current microcode word
1 0 0 b2 bl b0 | bytes of Opcode in Command Latch
1 0 1 b2 bl b0 bytes of A-coefficient in Command Latch
1 1 0 b2 bl b0 | bytes of B-coefficient Command Latch
1 1 1 b2 bl b0 | bytes of C-coefficient in Command Latch

The Command Latch settings show the command currently residing in the Command

IV.2.1 Image Generation Controller Chip
Rev 6.0 jge 11/14/97

PixelFlow System Documentation

IV.2.1 IGC Functional Specification pg. 17

Latch. This is either the currently-executing or last to execute command, if no additional
commands are available (IPHf is low), or the next command that will be executed after the
current command finishes (if IPHF is high). For these settings, b2/b1/b0 specify one of
the 8 bytes of the opcode or coefficient command word (b0 is LSB of byte-number, byte 0
is least-significant byte of command word). Note that: for commands with no P-Word, the
upper 32-bits of the Opcode are set to zero; for commands with 32-bit coefficients, the 64-
bit coefficient word is either sign-extended for integer coefficients, or double-precision
converted for floating-point coefficients; and for a “no coefficients” (or “C-coefficient
only”) type command, the coefficent words (or the A and B coefficients) are garbage.

The current microcode word setting outputs the specified byte of the currently executing
microcode word. It is used primarily for reading microcode store (after putting the
Sequencer into RMode) or providing a byte-wide window of a sequence of microcode
being executing (when not in RMode).

The diagnostics settings provide visibility of various control signals within the IGC. These

are shown in the following table:

Test{i}H ExtOp | SIGNAL DESCRIPTION RESET
2 1 0 {i}H NAME VALUE
0 RRdyHf asserted if R “ready” latch contains cmd 0
1 TRdAyHf asserted if T “ready” latch contains cmd 0
2 REmptyLf | asserted when RFIFO is empty 0
0 0 0 3 TEmptyLf | asserted when TFIFO is empty 0
4 Donelf asserted for done bit of current ucode word X
5 IPHf asserted if Command Latch has command 0
6 NewHf asserted on cycle Sequencer starts cmd 0
7 RModeH asserted when Sequencer is in RMode 1
0 BStH asserted if Sequencer test St-input branch X
1 BranchH asserted if Sequencer branch or in RMode 1
2 MWriteHf | asserted on cycle microcode store loaded 0
0 0 1 3 ResetHf latched version of chip input ResetH 0
4 DoneLf asserted for done bit of current ucode word X
5 IPHf asserted if Command Latch has command 0
6 NewHf asserted on cycle Sequencer does new cmd 0
7 RModeH asserted when Sequencer is in RMode 1
0 TCFHf asserted when FBCnt loop counter is O X
1 TC1Hf asserted when LpCntl loop counter is O X
2 TC2Hf asserted when LpCnt2 loop counter is O X
0 1 0 3 TC3Hf asserted when LpCnt3 loop counter is O X
4 Cnt2Hf asserted on cycle LpCnt2 is decremented X
5 Cnt3Hf asserted on cycle LpCnt3 is decremented X
6 — <UNUSED> 0
7 — <UNUSED> 0
0 LoadlFHe | asserted on cycle Interface Ctrl Reg loaded 0
1 SLoadHe latched version of chip input SLoadH 0
2 State2H three state bits of Stream Parser 0

PixelFlow System Documentation

IV.2.1 Image Generation Controller Chip
Rev 6.0 jge 11/14/97

Iv.2il

IGC Functional Specification pg. 18

——
3 State1H state machine (bit 0 is LSB) 0
4 StateOH 0
5 FTCmdHe | asserted cycle command written to TFIFO 0
6 FRWrtHe | asserted cycle inst-word written to RFIFO 0
7 FRCmdHe | asserted cycle command written to RFIFO 0
0 RBlockH RFIFO blocked (if RRdyHf asserted too) X
1 TBlockH TFIFO blocked (if TRdyHf asserted too) X
2 FavRHf asserted if RFIFO is “favorite” FIFO 0
3 DoMetaHf | asserted cycle that “meta” command done 0
4 RFifZerHf | asserted if RFIFO fifo-semaphore is O 1
5 TFifZerHf | asserted if TFIFO fifo-semaphore is O 1
6 RSeqZerHf | asserted if RFIFO seg-semaphore is 0 1
7 TSeqZerHf | asserted if TFIFO seg-semaphore is 0 1
0 AliveHf asserted if Image-Comp is “alive” 0
1 ICPendHf | asserted if Image-Comp transfer “pending” 0
2 LoadMacHf | asserted on cycle alive and ends loaded 0
3 L2RRunHf | precursor of ICL2R{HL} GTL outputs 0
4 L2RAmHf | asserted on cycle L2R path is “armed” 0
5 R2LArmHf | asserted on cycle R2L path is “armed” 0
6 L2RZerHf | asserted when L2R counter is zero X
7 R21.ZerHf | asserted when R2L counter is zero X
0 AuxHiLf 1
1 AuxLoLf 1
2 SrcHILf 1
3 SrcLoLf 1
4 LoadBaseHf | asserted on cycle PMA base-reg is loaded 0
5 TreeStepHf | asserted on cycle Serializer is “stepped” X
6 MuxOHf 0
7 Mux 1Hf 0
0 REmptyLf | asserted when RFIFO is empty 0
1 TEmptyLf | asserted when TFIFO is empty 0
2 RReadDecLf | asserted on RFIFO read cycle 1
3 TReadDecLf | asserted on TFIFO read cycle 1
4 RGreyOHf | 2 LSBs of number of RFIFO commands 0
5 RGrey 1 Hf since Reset, in Grey-code (bit 0 is LSB) 0
6 TGreyOHf | 2 LSBs of number of TFIFO commands 0
7 TGreylHf since Reset, in Grey-code (bit 0 is LSB) 0

There is a 3 cycle delay bewteen applying inputs to the Test[S:0]H inputs and the
corresponding effect on the ExtOp{0:7}H outputs.

The Idle signal. The output IdleH is asserted when both FIFOs and their read latches
are empty, no instruction is pending, and the currently-executing Sequencer microcode
word is asserting done. IdleH may be asserted if an Image Composition transfer is
pending. IdleH is valid only the when Test[0:2]H inputs are low.

IV.2.1 Image Generation Controller Chip
Rev 6.0 jge 11/14/97

PixelFlow System Documentation

IV.2.2 - IGC Logic Design pg. 1

® I1V.2.2 IMAGE GENERATION CONTROLLER
LOGIC DESIGN

The IGC is divided into the following top-level modules:

(1) StrPsr: latches for input interface, stream parser

(2) FIFO: dual buffers for input commands

(3) RTCntl: R/T controller, arbitrates between RFIFO and TFIFO commands,
contains semaphores, muxes R and T FIFOs

(4) ICCntl: Image Composition controller, handles ready/go chain and composition
control

(5) Cntl: the sequencer, address generators, and coefficient serializers

(6) OutputLatch: output delays, output multiplexer, and output pads

Iv.2.2.1 StrPsr Module

' StrPsr contains the input pads and single output pad for the instruction input interface,
logic for parsing the instruction stream, logic for converting all input opcodes and
coefficients into the 64-bit format used within the remainder of the IGC, and logic and
latches for controlling writes into the FIFOs and buffering the input comands.

The input interface consists of the following inputs: the instruction data word
SDat[0:31]H, the instruction write enable signal SLoadH, the reset signal ResetH, and
the IGC identifier IGCID; outputs are SRFullH and STFullH, the almost full signals
for the two FIFOs. All inputs are expected to meet setup and hold times referenced to the
"rising" edge of the off-chip salphasic clock (defined by SCIKH and SCIKL) and
therefore to be latchable in the input pads on the falling edge of the on-chip system clock
CIKL, and the outputs are guaranteed to meet minimum and maximum propagation delays
referenced to the salphasic clock and therefore latchable on the rising edge of the off-chip
system clock CIkH.

SDat[0:31]H, SLoadH, and ResetH are latched in their input pads. The resulting
signals have similar signal names, but with the -H suffix replaced by -He. ResetHe acts
as the reset input to the Stream Parser Finite State Machine (SPFSM); it is passed to
FIFO, which synchronizes it into the SClk domain and passes it to RTCntl, ICCntl, and
. Sequencer. SLoadHe and several bits of the data word SDat[0:31]He are also inputs

PixelFlow System Documentation IV.2.2 Image Generation Controller Logic Design
Rev 5.0 jge 11/17/97

IV.2.2 -- IGC Logic Design pg. 2

to SPFSM.

SDat[0:31]He passes into two unclocked logic blocks, CnvLo and CnvHi, which
perform conversions of the various input data types into double-length (64-bit) integers and
floating-point numbers used within the IGC. When CnvHe and HiZHeare both low,
CnvLo and CnvHi simply pass SDat[0:31]He through to LoDat[0:31]He and
HiDat[0:31]He; this mode is used for both words of a double-length (integer or floating-
point) input coefficient. When HiZHe is high, SDat[0:31]He is passed through to
LoDat[0:31]He and SDat31He is passed through to HiDat[0:31]He (sign-
extension). This mode is used for sign-extending a 32-bit integer integer coefficient to the
64-bit integer format used within the IGC, as well as for converting a 32-bit opcode to 64-
bit format; the sign-extension means that for Long commands, where the MSB of the low-
word of the opcode is 1, the high-word of the opcode will be set to Oxffffff, but this is ok
since the high-word will be overwritten by the next input word. When CnvHe is high (and
HiZHe is low), SDat[0:31]He is assumed to be a single-precision float and the double-
precision equivalent value is passed passed through to LoDat[0:31]He and
HiDat[0:31]He.

The Stream Parser Finite State Machine (SPFSM) parses the input instruction stream. It
decodes the bits of the opcode which specify which coefficients follow the opcode and
what data-type they are, and generates the signals CnvHe and HiZHe to convert data
types as described above, the signals SaveLoHe and SaveHiHe which disable latching of
the converted data LoDat[0:31]Hf into the output latches, and the signals FRWrtHe,
FRCmdHe, FTCmdHe, and FIABC[0:1]He, which control writing into the FIFOs.
The function of these control signals is described below in the FIFO Module description.

When bits 28 and 26 of opcode are set, this defines a special kind of command for the input
interface. If bit x is zero, this is an “ignore” command, meaning that StrPsr simply flushes
the command; this is normally used for a spacer word to pad to 8-byte address boundaries
in the GP. If bit x is one, then the command loads the Interface Specification Register. Bits
0-6 are loaded into the register RLim[0:6]He, bits 7-15 are loaded into the register
TLim[0:8]He, and bit 16 is loaded into the register EndianHe. Both types of command
will can have a 64-bit opcode and/or coefficient(s) if bit 31 or 27 is set, although they are
not used; neither command causes FRWrtHe, FRCmdHe, or FTCmdHe to be
asserted, so nothing is loaded into the FIFOs. RLim[0:6]He and TLim[0:8]He define
the “high-water” marks for the RFIFO and TFIFO, respectively, and are passed to FIFO.
EndianHe defines which word of a 64-bit coefficient comes first, and is an input to
SPFSM.

PixelFlow System Documentation IV.2.2 Image Generation Controller Logic Design
Rev 5.0 jge 11/17/97

IV.2.2 -- IGC Logic Design pg. 3

IvV.2.2.2 FIFO Module

This module consists of a single memory system, used to implement the RFIFO and
TFIFO first-in/first-outbuffers for instruction input, and associated logic for keeping track
of pointers into the memory and full and empty status.

Physically, the memory is arranged as 256 rows by 256 columns. The cells are dual-
ported (two pairs of bit-lines and two word-lines, per cell). The memory system has a
write-only port and a read-only port. The write port accesses a fourth of a row (a 64-bit
word) on each write cycle. The read port accesses an entire 256-bit row on each read
cycle.

Logically, the memory consists of the RFIFO, consisting of 128 entries each consisting of
four 64-bit words, and the TFIFO, consisting of 512 entries each consisting of a single 64-
bit word. Each RFIFO entry uses one row of the memory, and four TFIFO entries use one
row of memory.

The four 64-bit words of an RFIFO entry include the opcode (I word) and the three
coefficients A, B, and C (the A, B, and C words). Since TFIFO commands cannot include
coefficients, a TFIFO entry consists of just the 64-bit opcode. For RFIFO commands
which do not have coefficients, or which have only the C coefficient, the words in the
RFIFO corresponding to the missing coefficients will not be written; this means that the
missing coefficients will be undefined for these commands.

Each write cycle writes one of the four words of an RFIFO entry, or a entire TFIFO entry.
Each read cycle reads an entire RFIFO entry, or four separate TFIFO entries.

Each logical FIFO has two pointers for write and read access. These pointers reset to zero
on reset, and incremented each time a read of write occurs. The RFIFO pointers simply
indicate which row to read or write. The upper 7 bits of the TFIFO pointers indicate which
row to access (since each TFIFO row includes four entries). Within FIFOMemory, the
wordline drivers for the memories are qualified by [RT]ReadHf and [RT]WriteHe to
select which of the pointers to use.

FRWrtHe is asserted for one clock cycle to cause a 64-bit word to be written from
Str[0:63]He into the RFIFO. Module FIFO has two write input strobes (RWriteHe and
TWriteHe), and two read input strobes (RReadHf and TReadHf), each causing a write

PixelFlow System Documentation IV.2.2 Image Generation Controller Logic Design
Rev 5.0 jge 11/17/97

IV.2.2 -- IGC Logic Design pg. 4

or read to occur in the specified FIFO. Since the FIFO is implemented as a single memory
system with one write-only portand one read-only port, RWriteHe and TWriteHe are
mutually exclusive (only one FIFO can be written on a given clock cycle) and RReadHf
and TReadHTf are also mutually exclusive (only one FIFO can be read on a given clock
cycle); however, the dual ports allow a write and a read on the same cycle, as long as they
are not to the same FIFO location.

Flag Logic

FlagLogic contains a counter for each FIFO; these counter produce full flags (RFullHf
and TFullHf), empty flags (REmptyHf and TEmptyHf), and oveflow signals
(ROvfHf and TOvfHf). The empty signals become FIFO outputs are go to the RTCntl
logic. The full signals are driven become the chip outputs RFullH and TFullH. The
overflow signals are or’ed together, and go into a sticky-register, and produce the chip
output SOvfH. FlagLogic also contains the synchronizers and logic for producing the
“write” signals for the flag counters.

GreyCntr is a 2-bit Grey Code counter. It has a synchronous reset, ResetHe, and a
count-enable, CmdHe. It produces the sequence 00, 01, 11, 10 on the outputs
Grey[1:0]He. Note that the latches are clocked by ECIKk, not by CIk.

Mouse is a two-stage synchronizer. It synchronizes the input into an output signal which
is synchronous to CIk. It containsa a sequence of 4 transparent latches, buitl as mouse-
traps, alternately clocked by non-overlapping clocks MCIkH and MCIKL. These clocks
are produced from CIk using a pair of cross-coupled NOR gates.

GreyComp compares the Grey Code value on the current clock cycle with that of the
previous clock cycle, to determine how many counts have occurred. The output is a 2-bit
binary (not Grey-coded) number. The ResetHf input clears all 4 latches. (This reset is not
really necessary, since the ResetHe inputs to the GreyCntr’s could be held high for
many cycles, and the zero outputs allowed to propagate through the synchronizers and the
GreyComp’s).

The flag counter, which is cleared on reset, incremented when an entry is written to the
FIFO, and decremented when an entry is read. Thus the counter value represents the
number of entries in the FIFO. The zero-condition signal for each counter is computed in
look-ahead fashion to generate the two "empty"” signals, REmptyHf and TEmptyHI.

PixelFlow System Documentation IV.2.2 Image Generation Controller Logic Design
Rev 5.0 jge 11/17/97

IV.2.2 -- IGC Logic Design pg. 5

The RFIFO counter value, RCount[0:7]Hf, is compared to the limit value
RLim[0:6]Hf (MSB is understood 0) to produce an almost-full signal RFullHf;
RFullHf is asserted whenever the value represented by RCount[0:7]Hf is greater than
the value represented by RLim[0:6]Hf (RLim7HT is understood 0). Similarly,
TFullHf is asserted whenever the value represented by TCount[0:9]Hf is greater than
the value represented by TLim[0:8]Hf (TLim9HTf is understood 0). Note that the
comparison is “greater-than” instead of “greater-than or equal to”; this insures that the “full”
signals are de-asserted after a reset, because the counters are 0, so the comparison fails
even if the limit values have not been initialized. RFullHf and TFullHf go to latching
output pads to produce the chip outputs SRFullH and STFullH.

IV.2.2.3 RTCntl Module

This module controls the read port of the FIFOs, arbitrates between RFIFO commands and
TFIFO commands and passes the command to the sequencer, and processes "meta"
commands. In order to perform this arbitration, RTCntl contains a number of semaphore
counters, which are P’ed (wait and then decrement) or V’ed (increment) by special "meta”
commands, which may be placed in either FIFO. It also includes the multiplexer which
selects between RFIFO and TFIFO output, a latch for storing the next command for Cntl,
and handshaking logic.

One of the FIFOs is designated the “favorite” FIFO; if FavRHf is asserted, the RFIFO is
the favorite FIFO, otherwise the TFIFO is favored. FavRHTf is cleared on power-up, but it
can be changed by meta commands. Commands are read from the favored FIFO, until it is
blocked by a defer-type block command. If this occurs, commands can be read from the
non-favored FIFO; if it is also blocked, then no commands are read until one FIFO
becomes unblocked. Each FIFO can be blocked by one of two possible semaphore P
commands, are by a wait-for-IC command. These block commands include a “defer” bit
which is set to indicate that data should be read from the non-favored FIFO.

The opcodes from the two FIFOs, RI[0:63]Hf and TI[0:63]Hf, are multiplexed based
on which FIFO is to be used; this opcode, and the 3 coefficients, are latched into the
command latch. The command latch outputs [IABC]Word[0:63]Hf are the inputs to
Cntl. Each of the two FIFO Read Latches has a “ready” signal, RRdyHf and TRdyHf{,
which indicates that there is an unprocessed instruction currently in the Read Latch. Each
instruction is of one of two types, as determined by meta bit of the opcode, bit 28.

PixelFlow System Documentation IV.2.2 Image Generation Controller Logic Design
’ Rev 5.0 jge 11/17/97

IV.2.2 -- IGC Logic Design pg. 6

IvV.2.24 1ICCntl Module

ICChntl contains the logic for controlling image composition transfers.

It consists of registers for configuring the machine, two instances of ICCntIPath, and
four bi-directional pads.

The machine configuration register generates the signals: AliveHf which is 1 to indicate
that a board is active, LeftEndHf, which is 1 to indicate that a board lies at the left-hand
end of a virtual machine, and RightEndHf, which is 1 to indicate that a board lies at the
right-hand end of a virtual machine. ResetHf initializes this register to 0, so all boards are
“dead” after a reset.

One instance of ICCntIPath, named L2RCntl, controls the “left-to-right” pathway in the
Image Composition network; the other instance, R2LCntl, controls the “right-to-left”
pathway. Each ICCntlPath propagates the “go” chain in the direction of its name (e.g.
L2R- or R2L-); the two “go” chains share two bi-directional input pads. The IO pad
ICLGoH is connected to both LGoInHr, the “go” input to L2RCntl, and LGoOutHf,
the “go” output from R2LCntl; similarly, the IO pad ICRGoH is connected to both
RGolnHr, the “go” input to R2LCntl, and RGoOutHf, the “go” output from
L2RCntl. Similarly, the IO pads ICLRdyH and ICRRdyH are connected to the
“ready” inputs and outputs of L2RCntl and R2LCntl. However, each ICCntlPath
propagates the “ready” chain in the direction opposite the direction the “go”’chain is
propagated.

An Image Composition network transfer is initiated by asserting the input MetaOpHI,
with the correct bits of CmdIHf set. If bit X is set, then L2ZRArmHTf is asserted; this
loads the regsisters L2ZRFirstHf and L2RLastHf, and “arms” a transfer in L2RCntl.
Similarly, if bit X is set, then R2ZLArmHf is asserted; this loads the regsisters
R2LFirstHf and R2LLastHf, and “arms” a transfer in R2L.Cntl.

Within ICCntl, ArmHf loads the 13-bit counter with the appropriate cycle count, and
sets the PendHTf flip-flop. This allows the “ready” signal to propagate through this board.
The ready signal can propagate from RdyInHr to RdyOutHr if three conditions are met:
(1) the previous board must be “ready” (the RdyInHr input is asserted), or this board is
the last board in this transfer and so there is no previous board (LastHf is low); (2) this
board must be ready, meaning it has a transfer pending which has not already begun
(PendHT is high and RunHTf is low), or else this board is “dead” (AliveHf is low); and
(3) the “go” signal is not being asserted (GoOutHf is low).

PixelFlow System Documentation IV.2.2 Image Generation Controller Logic Design
Rev 5.0 jge 11/17/97

IV.2.2 -- IGC Logic Design pg.7

When the “ready” signal has propagated to the beginning of the chain, to a board with
FirstHf asserted, ICCntl generates the output GoOutHf, which is asserted for two
cycles, before GoOutHf inihibits RdyOutHf, which in turn inhibits GoOutHf. Then
each board propagates “go” from GoInHr to GoOutHf, since its RdyOutHTf is asserted.
As the “go” signal propagates down the chain, is causes the “ready” signal to recede, as
GoOutHf inhibits RdyOutHf ; on “alive” boards, GoOutHf also sets the RunHf flip-
flop, thereby disabling RdyOutHf until PendHf goes high again when the next transfer
is initiated.

When GoOutHf is asserted, the RunHf flip-flop is set. This causes the counter to begin
running. When the transfer was “arm”ed, this counter was loaded with the number of
cycles required for the transfer, minus one (NBytes[0:4]Hf *128 + 127); when the
counter conuts down to zero, the PendHf and RunHf flip-flops are cleared. Thus the
signal RunHf is asserted for exactly the number of cycles required for the transfer. When
PendHTf goes low, this allows another transfer to be initiated.

The chain of boards (from “first” to “last”) involved in a transfer may all lie in a straight
line, that is, they do not loop around the end of the virtual machine; if this is the case ...

Initializing this mechanism during system start is tricky. When the system is reset,
ResetHf causes AliveHf, LeftEndHf, and RightEndHf to be cleared. Thus each
board starts out “dead”. It a board is to be left “dead”, nothing more needs to be done to it;
it will behave transparently to the Image Composition network, provided that MetaOpHf
is never asserted, and so none of [L2R,R2L][Arm,First,Last]Hf are ever asserted. If
the IGC or GP is so brain-dead that this cannot be assured, then the board must be
removed from the system. After initialization, software loads the machine configuration
registers on all boards that are not to be left for dead; the AliveHf register is set to 1,
LeftEndHT is set to 1 if this board lies at the left-hand end of the virtual machine, and
RightEndHTf is set to 1 if this board lies at the right-hand end of the virtual machine.
Naturally, the left-hand-end board must lie to the left of the right-hand-end board, or they
may be the same board in a one board virtual machine. LeftEndHf and RightEndHf
must remain O on all dead boards. After the virtual machine is configured by setting
AliveHf, LeftEndHf, and RightEndHf on all “alive” boards, some time must be
allowed for the “ready” and “go” chains to initialize. Software must wait at least N clock
cycles, where N is the number of boards in the virtual machine, before initiating any
transfers. The “ready” chain is guaranteed to be cleared in this time because at least one
alive board will be emitting 0’s from its two “ready” outputs (since AliveHf is 1, and
PendHf is O since no transfers have been initiated) , and these 0’s will propagate around

PixelFlow System Documentation IV.2.2 Image Generation Controller Logic Design
Rev 5.0 jge 11/17/97

IV.2.2 -- IGC Logic Design pg. 8

the chain in N cycles.

IV.2.2.5 Cntl Module

This module is the sequencer which generates the cycle by cycle micro-instructions outputs
of the IGC. It also produces the address outputs, and the coefficient byte-stream and
associated control bits (unused for the IGC which drives the TASICs). It also produces
several strobes which become IGC outputs and are used for controlling other logic in the
rasterizer.

Cntl contains several modules:

(1) Sequencer: microcode memory and sequencer
(2) LpCat: counters used by Sequencer for counting loops (and as flags)
(3) PixMemAddr: counters for generating address outputs

(4) Serializer: logic for byte-serializing ABC tree coefficients

An instruction is latched into the modules of Cntl when exeuction of the previous
instruction has ended. At this point, Sequencer asserts NewHf and begins executing the
microcode sequence for the instruction. NewHIf causes the tree coefficients, and the loop
count and address fields from the opcode to be loaded into Serializer, LoopCount, and
PixMemAddr.

IV.2.2.5-1 Sequencer Module of Cntl

Sequencer is the heart of the IGC. It is a microcode engine, with 7 branch conditions,
single-entry stack, and no instruction pre-fetch. It contains the UcodeMemory sub-
module, with 1K (1024) words of 64-bit microcode store, and the AddrGen sub-module,
which controls program flow by generating microcode addresses.

Sequencer asserts DoneHf when it is ready for a new instruction. If IPHf is also hi (a
new instruction is pending), then NewHT is asserted, which causes Sequencer and the

other submodules of Cntl to begin executing the next instruction.

Cntl can also be placed into a special mode called RMode (RModeHT is asserted), which

PixelFlow System Documentation IV.2.2 Image Generation Controller Logic Design
Rev 5.0 jge 11/17/97

IV.2.2 -- IGC Logic Design pg. 9

is used primarily for reading and writing the Sequencer microcode store. RMode can be
entered by either (1) asserting the hard-reset signal, ResetHf, or (2) writing a special kind
of instruction, in which opcode bits IWord[32:34]Hf are set to 111. When in RMode,
NewHT is always asserted. Thus, instructions pass immediately from RTCntl into
Sequencer, without delay. Only a very limited set of instructions (those to read and write
a location in microcode memory) should be executed when RMode is in effect.

One of these instructions, in which opcode bits IWord[32:34]Hf are set to XXX, is
used for writing microcode store. MWriteHf is asserted when Cntl is in RMode, a new

instruction is pending, and the special opcode bits are set.

Sub-module UcodeMemory

UcodeMemory takes the pre-decoded address from AddrGen and reads or writes the
corresponding microcode word in the memory array.

The microcode word is 64 bits wide, formatted as follows:

ra— — — -
0-3 PMAInstr 4-bit control word for pixel-mem address counters
4 TreeStep step control for Serializer
5 CntF count-enable for FB Counter
6 Cntl count-enable for LoopCounter 1
7 Cnt2 count-enable for LoopCounter 2
8 Cnt3 count-enable for LoopCounter 3
9-16 BrCond sequencer branch condition
17 BrPol polarity control for branch test |
18 JSR jump to subroutine (branch and load stack register)
19 RTS return from subroutine (use stack register address)
20-29 Branch 10-bit branch address (goes to AddrGen)
30-31 Done Done signal (two copies)
22—93 Exter.rl)al —2 generate Instr| 0:23 |H and Ext02| 0:7 |H outputs

The low-order half of the microcode word, bits 0-31, generates control signals for the
remainder of Cntl . The high-order half of the microcode word, bits 32-63, generates most
of the IGC outputs, including Instr[0:23] and ExtOp[0:7]H.

The microcode memory is 128 rows by 512 columns. The memory word-lines,
Word[0:127]1H, are computed from the 7 MSB's of the address in pre-decoded form:

PixelFlow System Documentation IV.2.2 Image Generation Controller Logic Design
Rev 5.0 jge 11/17/97

IV.2.2 -- IGC Logic Design pg. 10

Hi[0:3]Hf, Med[0:3]Hf, and Lo[0:7]Hf. The 3 LSB's of the address in pre-decoded
form, RS[0:7]HS, select one of 8 rows for each of the 64 microcode bits.

When memory is read, the entire 64-bit word is latched to produce the signals
RdData[0:63]Hf; the high-order word generates most of the outputs of Cntl, via
OutputLatch, and the lower-order word produces the control signals for AddrGen and
for the other modules within Cntl.

Submodule AddrGen

AddrGen generates addresses for UcodeMemory in pre-decoded form. On any
microcycle, 4 possible addreses may be selected: (1) the new address, the starting address
for the next instruction to be executed, (2) the incremented address, the address
immediately following the current one, (3) the branch address, the address specified in the
branch address field, or (4) the return address, from the single-level stack register. The
branch adress field, BrAddr[0:9]Hf, is pre-decoded to produce the signals
BrHi[0:3]Hf, BrMed[0:3]Hf, BrLo[0:7]Hf, and BrRS[0:7]Hf. Similarly,
NewAddr[0:9]Hf are pre-decoded to produce the signals NewHi[0:3]HT,
NewMed[0:3]Hf, NewLo[0:7]Hf, and NewRS[0:7]Hf.. The incremented address
is generated from the current address in pre-decoded form. More or less simultaneously
with the pre-decoding, during the first quarter or so of the clock cycle, the address source
is selected, based on the sequencer instruction bits of the current microcode word
(RTSHf, DoneHf, BrCond[0:7]Hf and BrPolHf), the condition codes (the terminal
count conditions TC1Hf, TC2Hf, TC3Hf, TCFHf from LoopCount, and the
external condition codes StOH, St1H, and St2H), and the AddrGen inputs RModeHf
and IPHf. The address source is specified by Next[H,L] and Branch[H,L]. The four
possible addresses are multipexed to get the next address in two stages: first, the new or
branch address is selected according to Next[H,L], and the incremented or retrurn
address is selected according to RTSH; next, these two results are selected according to
Branch[H,L].

BrCond[0:7]Hf select one of the branch conditions (one of the 4 terminal counts or 3
external condition codes, or a null condition), and BrPolHf determines the condition
polarity: if BrPolHf=0, the branch occurs if condition code is non-zero (the external status
input is high, or the terminal count condition is low, meaning the counter value is non-
zero); if BPNZHf=1, the branch occurs if the external status input or counter value is zero.

Whenever the Done bit in the current microcode word is set, so DoneHf is asserted, this
indicates that the sequencer is ready for a new instruction. If IPHf is also asserted (there is

PixelFlow System Documentation IV.2.2 Image Generation Controller Logic Design
Rev 5.0 jge 11/17/97

IV.2.2 -- IGC Logic Design pg. 11

a new instruction ready), then NextHf is asserted. The microcode assembler insures that
BrCond{[0:7]Hf are set for an unconditional branch whenever DoneHf is asserted, so
either the branch or new address is selected according to IPHf. If IPHTF is asserted,
control jumps to the "new" address, specified by the inputs NewAddr[0:8]Hf; otherwise
control branches to the branch address (usually address 0, the "idle" state). The Done
microcode bit is set for the last word of the microcode sequence for each instruction, so
control branches directly from the end of one instruction to the first word of the next (if one
is available) or to address O (if one is not available).

Note that if no branch is desired, BrCond[0:7]Hf are all set to 0. If more than one of
BrCond[0:7]Hf is asseerted, then thre branch occurs if any of the indicated condition
codes are asserted (or de-asserted, according to BrPolHY).

When RMode is in effect, RModeHTf causes both NextHf and BranchH to be asserted,
so the new address is always selected.

The AddrGen output NewHTf is assered whenever a new instruction is begun; this
happens when a new instruction is available (IPHf is asserted) and either RMode is in
effect (RModeHT is asserted) or the previous instruction is done (DoneHT is asserted).
Note that NextH and NewHf are similar but not identical (they are the same when RMode
is not in effect), and are computed from separate identical copies of DoneHf.

If the MWriteHf input is asserted, the data on CWord[0:63]HTf is written directly into
to the microcode memory location specified by NewAddr[0:8]Hf. Note that
MWriteHf can be asserted only when RMode is in effect.

I1V.2.2.5-2 LoopCount Submodule of Cntl

LoopCount contains four counters, each with zero-detect, used by Sequencer for timing
loops, or as flags.

When NewHT is asserted, the four loop counters are loaded with the appropriate fields of
the opcode of the new instruction, IWord[0:63]HT.

LoopCount has 4 additional inputs, CntFHf, Cnt1Hf, Cnt2Hf, and Cnt3Hf

generated directly from bits in the Sequencer microcode word. Each of these becomes a
count enable signal for one of the counters. When it is asserted on a given clock cycle, the
value in the counter is decremented on the next clock edge, and the terminal count signal is

PixelFlow System Documentation IV.2.2 Image Generation Controller Logic Design
Rev 5.0 jge 11/17/97

IV.2.2 - IGC Logic Design pg. 12

asserted if the new value is zero.

The four terminal count signals, TCF[HL]f, TC1[HL]f, TC2[HL]f, and TC3[HL]f,
are the only outputs of LoopCount, and go to Sequencer where they can be tested as
branch conditions. The terminal count signals are valid even on the first cycle of any
instruction (immediately after the counter is loaded by NewHT); thus the count field can be
used simply as a flag which the microcode can test.

When NewHT is asserted, it overrides the count-enable signals for LpCnter1,
LpCnter2, and LpCnter3. However, for FBCnter, NewHTf forces the count-enable;
thus, the value in the opcode field is decremented by one (modulo the counter size) when
the value is loaded. This is so FBCnter can be loaded with the number of fractional bits
minus one, thereby facilitating a loop to discard the fractional part of the LEE result; when
FBChnter is used as an ordinary loop counter, the microcode asembler pre-increments the
user-specified starting loop count value so that this effect is transparent to the microcode
writer.

The following table summarizes the four loop counters:

Number | Field in Opcode Count-Enable Terminal Count
Bits (LSB - MSB) Signal Signal
FBCounter 2 22-23 CntFHf v NewHf TCF[HL]f
LoopCounterl 3 19 - 21 Cnt1Hf A INewHf TC1[HL]f
LoopCounter2 4 35 - 38 Cnt2Hf » INewHf TC2[HL]f
LoopCounter3 6 39 -44 Cnt3Hf A INewHf TC3[HLIf

Each loop counter consists of a half-adder which adds either O or -1 depending upon the
CountHf input, followed by a latch. The other adder input comes from a two-into-one
multiplexer which selects either the value from the latch, OutHf , or the new count value,
InHf. The zero-detect signal is computed in look-ahead fashion by looking at the
multiplexer output and the count-enable signal.

There is no logic which causes the loop counters to halt at 0. The microcode writer must

take care that a loop counter does not underflow before the terminal count condition is
detected by a conditional sequencer instruction.

IV.2.2.5-3 PixMemAddr Submodule of Cntl

PixelFlow System Documentation IV.2.2 Image Generation Controller Logic Design
Rev 5.0 jge 11/17/97

IV.2.2 -- IGC Logic Design pg. 13

PixeMemAddr generates the address outputs of Cntl. For any IGC instruction, 3
sequences of addresses may be specified by starting address in fields of the opcode.

PixMemAddr contains three 9-bit adders and base registers (one for each of the 3 pixel-
memory address sequences), four 9-bit up/down counters (the three addresses, plus the
refresh address counter), logic to decode the address instruction, and a multiplexer for
selecting among the counters. .

When NewHT is asserted, the counters DstCntr, SrcCntr, and AuxCntr are loaded
with the appropriate fields of the opcode of the new instruction, IWord[0:63]Hf, as

follows:
Field in Opcode (LSB-MSB)

DstAddrCntr bits 10-18
SrcAddrCntr bits 45-53
AuxAddrCntr bits 55-63

A fourth counter, RefCntr, is loaded with zero using a special command in which
IWord[34:32]Hf are [101]. Normally this is done only once, at system initialization.

PixMemAddr has 4 additional inputs, PMAInstr[0:3]Hf, generated directly from bits
in the Sequencer microcode word. These are decoded to produce the controls for the
counters and multiplexer, as follows:

PMAInstr[3:0]Hf Selects Counter Action |
0x0 RefCntr decrement |
Ox1 ¢ hold I
0x2 ¢ increment
0x3 i increment by 2
0x4 DstCntr decrement
0x5 ¢ hold
0x6 ¢ increment
0x7 ¢ increment by 2
0x8 SrcCntr decrement
0x9 ¢ hold
OxA ¢ increment
0xB ¢ increment by 2
0xC AuxCntr decrement
0xD ¢ hold
OxE ¢ increment
OxF ¢ increment by 2

PixelFlow System Documentation IV.2.2 Image Generation Controller Logic Design

Rev 5.0 jge 11/17/97

IV.2.2 -- IGC Logic Design pg. 14

. In this table, the action in the "Counter" column refers to the counter selected by the
multiplexer (in the "Mux" column). Only the selected counter can be incremented or
decremented. The increment or decrement always occurs after the value is used; that is, if
PMAInstr[3:0] = OxA, then the value from SrcCntr is selected by the multiplexer, and
SrcCntr is incremented, so that the new value is used next time SrcCntr is selected
(within the same instruction).

If the counter-load signal is asserted (NewHTf, or NewHf & IWord[34:32]Hf==0X1)
the increment or decrement operation is ignored; in other words, the load signal overrides
the count-enable signals.

A base-offset register can be applied to the pixel-memory operands, when each counter is
loaded. This base is applied to any operand in the range 0x1c0 - Ox1ff (a 64-byte area); the
upper 3 bits of the operand are stripped off, and this 6-bit quantity is added to the base-
offset register to determine the value to be loaded into the counter. However, if the
NoBase bit of the new instruction, IWord54Hf, is asserted, then the base-offset is not
applied. The 9-bit base-offset register is loaded when LoadBaseH(is asserted; this
occurs when NewHT is asserted and IWord[34:32]Hf == 001.

‘ The multiplexer produces the final output address, Addr[0:8]Hf.

IV.2.2.5-4 Serializer Submodule of Cntl

The Serializer is the most complicated of the Cntl modules. Its function may be
summarized as follows:

(1) convert the 64-bit integer or double-precision floating-point coefficients
(A,B,C) supplied with an instruction into byte-serial 2's-complement fixed-point
numbers with a specified number of fractional bytes

(2) produce a signal which marks the LSByte of each set of coefficients, which
controls pipelining in the linear expression evaluators of the EMCs

(3) adjust the C coefficient value to effectively offset the position of the rasterizer
region by both an integer region-offset and a fractional sub-pixel offset

When NewHT is asserted at the beginning of a new instruction, the three coefficients, A,
B, and C, are latched into three instances of the module CoefSer, and several bits of the

PixelFlow System Documentation IV.2.2 Image Generation Controller Logic Design
Rev 5.0 jge 11/17/97

IV.2.2 -- IGC Logic Design pg. 15

opcode which determine the handling of the coefficients are latched into module ILatch.
Every time Sequencer asserts the control signal TreeStepHf, each CoefSer generates
the next byte of its coefficient. Each CoefSer generates two byte-streams:
Whole[0:7]Hf, representing the coefficient value, and Fract[0:7]Hf, representing the
value of the coefficient divided by 256 (subscript O is the LSB of each byte). These two
byte streams represent the unsigned values; the CoefSer's also generate the signals
ASignHf, BSignHf, and CSignHf, representing the signs of the coefficients.

These byte streams for A and B pass into two instances of the ABChain module, which
simply two's complements the byte-stream if the sign is negative, and applies a delay to
generate the TrA an TrB outputs of Serializer. The byte streams for A and B also pass
into two instances of the Adjust module, which compute the two offsets to be added to the
C coefficient. These offsets are added to a signed and delayed version of the C coefficient
within CChain, which produces the TrC output of Serializer.

The region- and subpixel-offset values are loaded into Serializer by a special type of
instruction which has bits 61-63 of the opcode set to XXX. For this instruction, the C data
represents these offset values. The values are latched into module OffsetLatch, which
feeds the values to the AAdjust and BAdjust modules.

The module Timing generates the signals Step[0:X]Hf and Pipe[0:X]Hf, which
control the flow of the coefficient byte streams through the various other modules of
Serializer; it also generates the signals TrStHf and TrLSBHI, the two remaining
outputs of Serializer.

Submodule ILatch

ILatch handles all the bits of the opcode which specify how the coefficients are used for
the new instruction (IWord[19:27,61:63]Hf) and produces the appropriate mode signals for
the other circuitry in Serializer.

CMaskHTf is asserted if IWord27Hf is low, meaning the new instruction does not use
coefficients. ABMaskHT is asserted if either IWord27Hf or IWord26Hf is low,
meaning that the new instruction does not use the LEE in linear mode (or at all).
FracEnHf is asserted if IWord[27,26,24]Hf are all three high, meaning the new
instruction uses the LEE in linear mode, and the coefficients are floating-point.
Mask[0:7]Hf are derived from IWord[19:27]Hf. These four outputs are latched when
NewHT is asserted for a new instruction, so are valid during the entire instruction.
FracEnHTF is delayed by a clock cycle to match the circuitry in AAdjust and BAdjust.

PixelFlow System Documentation IV.2.2 Image Generation Controller Logic Design
Rev 5.0 jge 11/17/97

IV.2.2 -- IGC Logic Design pg. 16

The output FloatHf is asserted if IWord27Hf and IWord24Hf are asserted; this means
the incoming instruction uses the coefficients and they are floating-point.

The outputs FBytes[0:1]Hf are simply IWord[22:23]Hf; they represent the number of
fractional bytes to be generated (for floating-point coefficients).

The output OffEnHf is asserted when NewHT is asserted if IWord[61:63]Hf are 010.
This causes the C coefficient values to be loaded into submodule OffsetLatch.

Submodule OffsetLatch

OffsetLatch latches the C coefficient values when OffEnHT is asserted; this means that
this is a special instruction used for loading the region and subpixel offset registers.

The bits are interpreted as follows: ...

Submodule ABCoefSer (instances ACoefSer and BCoefSer)

There are two instances of ABCoefSer, one for each of the coefficients A and B;
described below is a similar submodule, CCoefSer, which handles the C coefficient.

When NewHT is asserted, the corresponding coefficient is loaded into ABCoefSer. The
coefficient value is encoded on the inputs Word[0:63]Hf in either IEEE-standard double-
precision floating-point format, as a 64-bit integer, or as a 64-bit fixed point number with
16, 24, or 32 fractional bits.The double precision floating-point format is:

bits 0-51 normalized mantissa (understood 1 to left of radix), MSB at bit 52
bits 52-62 exponent in excess-1023 form
bit 63 signbit

Three components of CoefSer are loaded: the exponent counter, the mantissa latch, and
the signbit latch.

The opcode bits IWord[22:24,26:27Hf describe the coefficient value as follows:

PixelFlow System Documentation IV.2.2 Image Generation Controller Logic Design
Rev 5.0 jge 11/17/97

IV.2.2 -- IGC Logic Design pg. 17

Type

Non-coefficient

Constant

Linear, Integer

Linear, Integer 6 : 2

Linear, Fixed 5: 3

Linear, Fixed 4 : 4

M=o (= o [N

Ll el el el L Y f)
r—lb-—lhdb—db—‘ox
=lolo|o]lo]x]|x

Linear, Floats

Since integers are in two's-complement form, the signbit register is loaded with O for
integers; for floats, it is loaded to the signbit (bit 63).

For integers, all 64-bits are loaded directly into the Mantissa Latch. For floats, the
understood 1 to the left of the radix point is added to the 52-bit mantissa field, and the
reamining 11 bits are set to zero; this mantissa is left shifted if necessary, before being
loaded into the Mantissa Latch, so that the radix point is aligned at a byte boundary. The
shift amount is determined by adding 5 to the 3 LSB's of the exponent field, to yield a
value between 0 and 7.

The most significant 8 bits determine the initial value for the exponent counter. The
exponent is represented in excess-1023 form. The true exponent is determined by
subtracting 1023 from the exponent field. If the 3 L.SBs of the true exponent are 4, the
mantissa should not be shifted (the understood 1 to the left of the radix point is in bit
position 4 of its byte); if true exponent % 8 is 5, the mantissa must be shifted one to the
left, and so on so that the mantissa is shifted 7 bits to the left if true exponent % 8 is 3.
Thus, the barrel shifter adds 5 to the 3 LSBs of the exponent field (1 to account for the
1023 subtracted to determine the true exponent, and 4 for the offset) to determine the shift
to be applied.

The stream of bytes representing the unsigned coefficient is generated by selecting bytes,
from LSByte to MSByte, from the mantissa latch. This is done by means of a set of 8
precharge-evaluate bit-lines, one for each bit of the byte. These lines are precharged during
CIKL, evaluated during CIkH, and inverted and latched on the falling edge of CIkH.
There are two sets of these bitlines, one for Whole[0:7]Hf, and one for Fract[0:7]Hf.
The signals Select[0:8]JHf determine which, if any, of the bytes from the mantissa latch
is to be asserted onto the bitlines and latched. No more than one of Select[0:8]Hf is
asserted on any clock cycle; if none is asserted, O's are latched.

PixelFlow System Documentation IV.2.2 Image Generation Controller Logic Design
Rev 5.0 jge 11/17/97

IV.2.2 -- IGC Logic Design pg. 18

Select[0:8]Hf are generated from TokEnabHf and TokCntr[0:4]Hf. When
coefficients are converted to fixed-point byte serial form, the fixed-point representation can
have from O to 3 fractional bytes, as determined by FBytes[0:1]Hf (bits 22-23 of the
opcode). If the exponent is so small that the mantissa lies completely to the right of the least
significant fractional byte, or if the exponent is so large that the LSB of the mantissa lies
more than 64 bits to the right of the radix point, then the byte-stream should be all zeroes;
in the first case, the fixed-point equivalent is zero, and in the second case, the non-zero
bytes would never appear, since no more than 8 bytes (plus the fractional bytes) of the
coefficients are ever generated, since the maximum operand length for instructions which
use the LEE is 8.

bits 53 - 63 actual exp shift TokEnab | TokCntr[4:0]
0x000 - Ox3fa <-4 X 0 X
0x3fb - Ox3fe -4 to-1 0 -31 0
0x3ff 0 4 1 0
0x400 1 5 1 0
0x401 2 6 1 0
0x402 3 7 1 0
0x403 4 0 1 1
0x40A 11 7 1 1

If the coefficient is integer, things are much simpler. The sign is considered to be zero,
since the integer is two's-complement. The entire 64-bits of the integer are just latched into
the Mantissa Latch with no shifting. A one is loaded into the TokEnabHf latch, and 7
into the TokCntrHf counter, so that the eight bytes of the integer are output in order.

After the mantissa is shifted and loaded into the mantissa latch, the exponent is decoded and
loaded into the TokEnabHf latch and TokCntrHf counter, and the sign is latched,
generation of the unsigned byte-streams can begin. Each time TreeStepHf is asserted,
the value on TokCntr[0:4]Hf is decremented and the next byte of the coefficients is
generated.

Since there is no use for fractions of the C coefficient, the bit-lines and latch for
Fract[0:7]Hf are absent in CCoefSer.

TreeStepHT is delayed by a cycle, in Timing, to represent the cycle of delay injected by
the latch for the CoefSer outputs Whole[0:7]Hf and Fract[0:7]Hf. Thus, StepOHf
is asserted once for each new byte which appears on Whole[0:7]JHf and Fract[0:7]HF.

PixelFlow System Documentation IV.2.2 Image Generation Controller Logic Design
Rev 5.0 jge 11/17/97

IV.2.2 -- IGC Logic Design pg. 19

If the opcode specifies that the LEE is to be operated in constant mode for this instruction,
then the ILatch output ABMaskEnH(f is asserted; in ACoefSer and BCoefSer, this
causes the WholeHf outputs to be zeroed, so the LEE result will be the desired F(x,y) =
C.

If the instruction does not use the ABC coefficients, it may use an 8-bit field of the opcode
as a single-byte value to be used in the pixel-ALUs. This value is passes down using the
LEE. In this case, the ILatch output CMaskEnHT is asseerted. This causes CCoefSer to
generate Mask[0:7]HTf for the first byte; any additional bytes are garbage.

If the coefficient is in range, O's and 1's are produced as the token is shifted to the left in
the Token Shifter. When the counter underflows and none of the SelectHf are asserted,
only O's are produced; the reflects the fact that sign-extension in a sign-magnitude
representation is realized simply by adding trailing O's. If the exponent is so large that
initially none of the SelectHf are asserted, then the first few bytes of the coefficient will be
0's. This reflects the fact that precision is lost when converting very large numbers to
fixed-point. When the exponent field is outside the range 0x3fb - Ox4fa (actual exponent
between -4 to 251) then TokEnabHTf is zero, the SelectHf are never asserted, and the
coefficient is zero. This is the right result for very small coefficients (the fixed point
equivalent for any number less than 27-8*fbytes is zero), and is ok for coefficients with
exponents above 251, because the mantissa bits all lie more than 128 positions to the left of
the radix point, so the first 16 bytes of the fixed-point equivalent are zero, and no
instruction can use more than 16 bytes of the LEE result in any case.

Submodules AChain, BChain, and CChain

Submodules AChain and BChain simply two’s-complement the A and B coefficient
byte-streams, based on the signbits ASignHf and BSignHIf, and then delay the byte-
streams by 8 additional cycles to produce Serializer outputs TrA[0:7]Hf and
TrB[0:7]Hf.

Submodule CChain is quite similar, but it adds in the multiples of the A and B

coefficienst, from AAdjust and BAdjust, which adjust the C coefficient for the region
and subpixel offset. It produces the Serializer output TrC[0:7]Hf.

Submodule Adjust

PixelFlow System Documentation IV.2.2 Image Generation Controller Logic Design
Rev 5.0 jge 11/17/97

IV.2.2 -- IGC Logic Design pg. 20

There are two instances of Adjust, one for the A coefficient (AAdjust), and one for the B
coefficient (BAdjust).

Adjust performs two's compementing on the coefficient bit-stream if the sign is negative,
When a coefficient register is loaded, the signbit of the coefficient is latched into leafcell
WordLatch. When the coefficients are posted, the signbit is transferred to one instance of
PostCLatch, and the other instance of PostCLatch is loaded with the logical-AND of
the latched version Tok64LSP2 of the out-of-range exponent decoder output, and one of
the ILatch outputs ABEnHSP2, DEFEnHSP2, or 0 (depending on which instance of
CoefGate).

The bit-stream from CoefSer, BitHSP2, is two's complemented using the following
algorithm: "pass the bits unchanged up to and including the first 1 that is seen, then invert
all the remaining bits". SOneHSP?2 is cleared when the coefficients are posted, and
remains low until the first 1 is seen. If the sign-bit was 1, then InvLSP2 is asserted when
SOneHSP2 goes high, and the remaining bits of the coefficient will be inverted in the
exclusive-OR gate.

Specifying Serializer Control Fields in the Opcode

This section summarizes the bits in the opcode which affect the Serializer. These fields
are: the Coefs bit, the Linear bit, the Float bit, the Double bit, the 8-bit Mask field, and the
2-bit FBCnt field.

IV.2.2.6 OutputLatch Module

OutputLatch contains the output pads for the Cntl outputs as well as some delay and
multiplexer logic.

The outputs are of two types. Most of the outputs, including the micro-instruction outputs
Instr[0:23]H, the address outputs Addr[0:8]H, and the tree outputs Tr*H, are driven
out in complementary pairs: each output signal drives a pair of output pads, both of these
latch the signal, one drives an active-high version of the signal, and on drives an active low
output. However, the external operation strobes ExtOp[0:7]H are driven out by simple
latched LVTTL-level output pads.

PixelFlow System Documentation IV.2.2 Image Generation Controller Logic Design
Rev 5.0 jge 11/17/97

IV.2.2 -- IGC Logic Design pg. 21

The outputs ExtOp[0:7]H are driven by a multiplexer controlled by the test-mode inputs
Test[0:5]H. Under normal operating conditions, Test[0:5]H are grounded and
multiplexer channel 0 is selected.

In normal mode, Instr[0:23]H and ExtOp[0:7]H are generated directly from the high-
order 32-bit word of the Sequencer output word, RdData[32:63]Hf. An additional 10
cycles of delay are applied to generate Instr[0:23]Hf; this matches the latency introduced
into the Tr*Hf signals within Serializer. This pipeline delay is not applied to the
external operation strobes, ExtOp[0:7]H.

In normal mode, RdData[32:63]Hf are gated to zero when RModeHf is asserted. This
prevents the state of the EMCs, TASICs, and external memory from being modified if an
IGC is put into RMode to do an "on-the-fly" reload of the sequencer microcode store.

The address outputs Addr[0:8]Hf are delayed by only 8 additional cycles; this matches
the latency of Instr[0:23]Hf and Tr*HIf, since PixMemAddr introduces two cycles of
latency in its input block and output multiplexer.

In the various test modes, the output ExtOp[0:7]H are driven by alternate sources. These
are summarized in the following table:

The output IdleH is computed from Diag[0:5]L. It is asserted when both FIFOs and their
read latches are empty, no instruction is pending, and the Sequencer is in the Done state.
IdleH does not depend on the state of ICCntl, so it may be asserted even when an Image
Composition transfer is pending. Diag[0:5]L have the correct values for computing IdleH only
when DSelOH is asserted. Thus IdleH is valid only when the Test[0:2]H inputs are low;
otherwise its value is nonsense.

PixelFlow System Documentation IV.2.2 Image Generation Controller Logic Design
Rev 5.0 jge 11/17/97

\ JHIeg: 0L 3 n

sHB:lWNL o\
\

oHlg:0lw ~\ l JHleg:0lereaPY z
JHIE9:0l0H 3

JHIE9:0lPIOMOD 3

JHleg:0lay ua . JH[B:0MPPY
JHleg:0lpIoMa 3 n 3

aH[e9:0lns 3 n

JHIZ:0]0AL

OutputLatch

JHleg:0lvy un _
JH[Eg:0lPIOMY 3

JHleg:0lly Mn- IH[z:0laL
\ JHleg:0lpiomI v THIZONVIL

3
oH[1:0l08VId o \ JHAdw3Y
aHPWOHA JHAdws L JHESL

SHUMHYS oL
JIpeady

SHPWOL4

JpeadL THoPONY

63]Hf
8

IWord|0:
7Hf 8 /

7L

ICPendHf
DSell0:
Diag(0:

64

and

<
«

63]Hf

for chip core,
ESDring,
pad ring

bi-dir pad
signal returns
bi-dir pad
references
and power
GTL returns
and references

8x8 array of

diagnostic

gates

[IABC]Word][0:

PadInLVTTL

-

:31]He

SDat[0:

[29:31]

LoDat[0:31]H 32, [0:31]

—> PadinLVTTL

N2/

i /

HiDat[0:31]H 32 [32:63]
> L 1

[24:31]

/f

SLoadHe

IGCIDHe

—_— 3

SaveLoH

/

SaveHiH

LoadIFH

LE

Endian

Note: All latches in StrPsr are
clocked by EClk (not by Clk).

OldStateH

NewStateH

InLongHe

InCoefHe

InLinHe

é CoefHe

LinHe

DblHe

FltHe

2y

ForRHe

/

P State[0:2]He

NewStateH

State[0:2]He

NOTES:

If IDOKH is not asserted, or IgnoreH is
asserted, the command is parsed according to
SDat[26,27,31]He, but FRWrtHe, FRCmdHe
and FTCmdHe are not asserted.

If a TFIFO command has the 'coef' bit set, the
additional words are ignored, and FTCmdHe
is asserted once for the |-word.

CoefHe
StateOHe
State2He
State1He
StateOHe

DblHe
InCoefHe
InLongHe
State2He
State1He
StateOHe

NewStateH

StateOHe

DblHe
State2He
State1He
InLongHe
State2He
State1He

State2He

State1He

DblHe
FltHe

State2He
State1He
DblHe
FltHe
State2He
State1He

State2He
State1He
StateOHe

FifCmdHe

NOTE: Endian = 1 means hi-
order 32-bit word of 64-bit
coefficient comes first.

State2He

State1He
StateOHe

IDOKH

NewStateH

State2He
State1He
StateOHe

IgnoreH

SDat25He

DblHe
State2He
State1He
StateOHe
InLongHe
State2He
State1He
StateOHe

State2He
State1He
DblHe
DblHe
State1He
StateOHe
CoefHe
State1He
StateOHe
InCoefHe
InLongHe
State2He
State1He
StateOHe

State2He
State1He
StateOHe
DblHe
State2He
State1He
DblHe
State2He
StateOHe
CoefHe
LinHe
State2He
StateOHe
InCoefHe
InLinHe
InLongHe
State1He
StateOHe

StateOHe
OldStateH

NewStateH

State1He
OldStateH

NewStateH

State2He
OldStateH

NewStateH

PadoutLVTTL

T Y

v
BumpRHe BumpTHe TWriteH RWriteH

WiBank{0:3]H

FIFOMemory

256 bits wide, 256 words deep:
128 rows for TFIFO (512 64-bit slots)
128 rows for RFIFO (256-bit slots)

TWrPtr{0:8]He

>
>

SR
> T Write Pointer CE BumpTHe RWriteHe —>

WriteWord
TWriteHe —>| Cells

RWrPtr{0:6]He

e

7
1’ .

SR
y i — BumpRHe
> R Write Pointer P RReadH —>|

TReadH —>|

7y RRdPtr{0:6]Hf S
|l i

=
>

Read Control

SR
—C> R Read Pointer RReadH

Mem0[0:63]H
Mem1[0:63]H
Mem2[0:63]H
Mem3[0:63]H

ResetHf 9/ TRAPtr{0:8]Hf
I /

SR
> T Read Pointer — TReadH

[RT]FullHf

NOTE: The pointers are
actually done with 4 and 8
stage shift registers
cascaded together.

4 to 1 mux

[<— FRCmdHe 64
[€<— FTCmdHe

FIFO Flag Logic _C> T Read Latch R Read Latch

I€— RReadH
[€— TReadH

TReadH Rieadt

NOTE: Where not specified,
latches are clocked by Clk.

RCount

ResetHf

GreyCntr

GreyComp

TCount

ResetHf

Note: These latches
are clocked by EClk
(not CIk).

Grey1He

counting sequence:
00

Grey1He

GreyCntr

MouseBit
MouseBit
MouseBit

P Cnt[N:OJHf

ResetHf
CntNHf
P1Hf
POHf

ResetHf

CntOHf
Cnt1Hf
Cnt2Hf

CntNHf

N+1

EmptyHf

CRlN:OJHf ==—f=>

[N-1:0]

Note: EmptyHf and
FullHf are invalid after
overflow occurs.

Note: After reset, FullHf
is low, regardless of
LimHf values, because
test is >, not >=.

RCount (N=7)
TCount (N=9)

NOTES:

control logic ensures that same row cannot be read and written on same cycle
writes can occur every cyclez

reads can occur every two cycles

ReadRow MemO0BOOH
Mem1BOOH
Mem2B0OH
Mem3B0OOH
MemOBO1H
Mem1BO1H
Mem2B0O1H
Mem3BO1H

[

|

64 instances of WriteRow

Mem0B62H
Mem1B62H
Mem2B62H
Mem3B62H
MemOB63H
r Mem1B63H
WriteRow Mem2B63H
ReadRow | Mem3B63H

MOHPESY JO SeoUBISUI 952

[111

ReadCtrl

there are two 3-level decoder trees for
each port of each FIFO
the trees branch 4 ways at each level, and are
driven by outputs of 2->4 decoders’
the MSB of address defines which tree is !
active, and the 6 LSBs drive the 3 decoders

128 TFIFO rows
128 TFIFO ro¥S

128 RF\FO TOWs

128 RFIFO r°ws‘<—

RReadH and TReadH are
mutually exclusive

RReadH and RwriteH are mutually exclusive if
RRdPtr[0:6]Hf equals RWrPtr[0:6]Hf; similarly
TReadH and TwriteH are mutually exclusive if
TRdPtr[2:8]Hf equals TWrPtr{2:8]Hf

LE

|
UseRHf

o~ 5

mux

NOTE: ICPendHf, Fav[RT]Hf. and [RT][Fif, Seq]ZerHf must change 3
on cycle immediately following NewHf, else logic can break UseRHf UseTHf

TFifZerHf —
ResetHf

TSeqZerHf

BlockTH

ICPendHf — I

RdyHf
pht TDeferH RDeferH
u - RFifZerHf —
pseq
BlockBH

IPHf NOTE: UseRH and UseTH are

RSeqZerHf —
mutually exclusive

“pic*

ICPendHf —— |
“meta”
RRdyHf ResetHf
"defer” Y

ResetHf
ReadHf

TReadHf

WantRH
UseTH
FavTHf

WantRH
ResetHf

UseRH ReadHf

RReadHf RRdyHf

WantTH
UseRH

FavRHf

——> RFifZerHf
ResetHf —> —> TFifZerHf
—> RSeqZerHf

—>
Ml —> TSeqZerHf

6
IWord[12:15,28,30]Hf +)

SemaOvfHf

SemaCntrs

VRSeqInHf 5 VRSeqOutHf

VTSeqOutHf

VTSeqlnHf

IWord12Hf
DoRMetaHf

IWord14Hf

DoRMetaHf
DoTMetaHf

IWord12Hf
DoTMetaHf

) 3 IWord14Hf

HE
o L DoRMetaH

IWord13Hf
DoRMetaHf

SemaCntr
(RFifBIk)

Dec

SemaCntr

(TFifBlk)

[«<— ResetHf

—> TFifOvfHf

Dec

SemaCntr
(RSeqBIk)

Q IWord13Hf
Note: Digital low-pass n't DoTMetaHf

allow V[RT]SeqInH on
successive cycles.

€« ResetHf

—> RSeqOViHf

DoRMetaHf
IWord15Hf

DoTMetaHf

RFifOviHf

NOTE: *ZerHf must change on cycle immediately TFifOviHf
following Do[RT]MetaHf, else two P's in a row breaks RSeqOvfHf

TSeqOviHf
ResetHf

[€<— ResetHf

—> TSeqOvfHf

ResetHf

ResetHf

NOTE: not necessary to detect underflow,
because RTCntl logic does not allow it

IncHf
DecHf
ResetHf

IC[L2R, R2LISt[1:0]H codes:

o e o . 00 - nothing happening
System initialization sequence: 01 - we're holding things up

i 1) assertResetHf for at least two cycles 10 - we're pending, but not runni
1::2:;:;: b‘:f;’ 2) set AliveHf and *EndHf registers (wg:e b;gg held up) sy
— at least one board must be Alive 11 - we're compositing
— at least one Alive board must have LeftEndHf set
o8 DoMetaHf — at least one Alive board must have RightEndHf set Visible in JTAG config register:
‘ — LeftEnd board must be to left of (or same as) RightEnd board 0 - RightEndHf
3) sync GPs, wait at 2 * number_of_boards cycles, 1 - LeftEndHf

DoMetaHf before attempting to initiate any transfers 2 ;2222&“;

4 - L2RLastHf
24 . 5 - R2LLastHf
| 6 - L2RPassHf

LE SR 7 - R2LPassHf
39 AliveHf ICCntiPath
(R2LCntl)

40 LeftEndHf

41 _L‘D—r RightEndHf Note: Counter actually
contains value-1, to

N\ make zero-detect easier.

PE overrides CE.
R2LRunHf

[57:61] R2LBytes[0:4JHf 5, i
7 NOTES:
ICPendHf must go hi immediately after
DoMeta, else RTCntl logic breaks.
DoMetaHi ICPendHf is computed synchronously,
R2LArmHf with a separate latch (for speed).

AliveHf R2LPendHf

55 _L—_D—v ReLFirstHf PendHf
|_—D—> R2LLastHf L2RPendHf

(this portion in pad-ring area)

(18]

AliveHf —
ve RRdyOutHf

R2LLastHf RdyOutHr RRdyOutHr
LRdyInHf RdylInHf

LGoOutHr GoOutHrl | FirstHf

R2LFirstHf

GolnHf | RGolnHf PadBiDir

y RightEndHf
For IC[LR]JRdyH and

PadBiDir IC[LR]GoH bi-directional pins, Note: DatinHr outputs | PadBIDIr fe——
input data must be stable of pads are not used.
about Clk-falling, output data

changes caused by Clk-rising.

PadBiDir | LeftEndHf

LGoOutHf

LGolnHf RGoOutHr
Solnb GoOutHr I S outh

GoOutHf

LRdyOutHf
LRdyOutHr

RdyOutHf
RdyOutHr RdylnHf

RRdyInHf

DoMetaHf

L2RArmHf
ArmHf PendHf F—> L2RPendHf
r| AliveHf

ICCntIPath

ke H)___,”“F"S‘“' FirstHf (L2RChntl)
L2RRunHf

L2RLastHf

LastHf

PaN
? AliveHf —>}

ResetHf —>f

47:51] L2RBytes{0:4]Hf 5 SHO:JH
A yieslo) —/=> NBytes[0:6]H

RModeHf —»

NewHf —»

30
IWord[10:18,32:34,45:53,54,55:63]Hf +>

PixMemAddr

NewHf —|

15
IWord[19:23,35:44]Hf +’

LoopCount

TCHHLUF

~
\ N

TCRHLIT

13
1Word[0:9,32:34]Hf +>

Sequencer

3]Hf

PMAInstr(0:

TreeStepHf

11
1Word([19:27,33:34]Hf +>

NewHf —

Serializer

9)[HL}f 20, [20:29]
8, [9:16]

BrPol[HL]f
<BrAddr{o
<BrCond[() 7]Hf

RdData[0:63][HL]f

Y

Y

L HIz:0lsH
L]l'
< HIz:0lo1
— e
nr HIe:0lPeN

AR

HIE0lH

Y

\i

AddrGen
microcode
memory)

UcodeMemory
(1024 x 64 bits

Yvy

St[0:2][HLIf

MWriteHf

schematic

‘FIFO Flag

Note: Write cannot
successive cycles.

Log
occur on two

[ERRRRNRRRNEEN

o
1

1
qf

8

TR
i

hg

}aws, in 64 groupd

[IRRRRNRRRRRNNN

|<a— WDatOHf
— RDatOLf
— RDatOHf

[<e— WDat1Hf
— RDat1Lf
RDat1Hf

t— WDat62Hf
— RDat62Lf
— RDat62Hf

let— WDat63Hf
— RDat63Lf
— RDat63Hf

3]H

one of Hi[0:
one of Med|0:

3H

7H

one of Lo[0:

=

Y
HIOMoY jo saouelsul 9

TCILE TC2Lf TC3Lf StoHf St1Hf St2Hf

RModst_.q Note: This circuit
burns DC power
(except during
e RMode).
s

1

[2 [3 [4 [5 [7)/ [0]

(2] [31\ [4“ [sﬁ {21\ [m
e Lo 4o br 40 bg T

BrPolHf

TCIHf TC2Hf TC3H StOLf StiLf At BrCondoif

RModeHf
DoneHf
IPHf

Notes:

- NewHf and NextHf are identical except during RMode

- can branch on logical-or's of branch conditions by
setting more than one of BrCond[0:7]Hf
(might not run fast enough however)

- set all BrCond[0:7]Hf to O for "increment"

- "unconditional branch* MUST be set whenever

DoneHf is set

Could have nore levels in stack. Would need to
qualify JSRHf and RTSHf with BranchHf (so failed
conditional jsr or conditional return doesn't

4
0_41_\
0—8,L~ corrupt stack). This would probably be too slow,
0—8+‘

PreDecoder

so could disallow conditional return's (speed
wouldn't be a problem for conditional jsr's).

S)

LAYOUT NOTES:

cell AddMisc* has a slice of both
PreDecoders, return latch, and Incrementer

Incrementer
cell AddMux has a slice of all 3 muxes and the
output inverter

cell AddrGen contains everything else,
including NewAddr inverters

*Addr8Lf
*AddroLf

*Addr8Hf
*AddroLf

*Addr8Lf
*AddroHf

*Addr8Hf
*AddroHf

*AddréLf
*Addr7Lf

*AddréHf
*Addr7Lf

*AddréLf
*Addr7Hf

*AddréHf
*Addr7Hf

"Br" or "New" for two instances of

*MedoOLf

*Med1Lf

*Med2Lf

*Med3Lf

*Addr3Lf
*Addr4Lf
*Addr5Lf

*Addr3Hf
*Addr4Lf
*Addr5Lf

*Addr3Lf
*AddraHf
*Addr5Lf

*Addr3Hf
*AddraHf
*Addr5Lf

*Addr3Lf
*Addr4Lf
*AddrsHf

YTy

*Addr3Hf —
*AddrdLf ——
*AddrsHf ——

*Addr3Lf —
*Addr4Hf ——
*Addr5Hf ——

*Addr3Hf —
*AddraHf ——
*AddrSHf ——

Yy

*AddrOLf —
*AddriLf —
*Addr2Lf —

*AddrOHf —
*AddriLf —
*Addr2Lf —

*AddrOLf —
*Addr1Hf —
*Addr2Lf —

*AddrOHf ——
*Addr1Hf —
*Addr2Lf —

*AddroLf —
*AddriLf —
*Addr2Hf —

*AddrOHf ——
*AddriLf —
*Addr2Hf —

*AddrOLf —
*Addr1Hf ——
*Addr2Hf ——

*AddrOHf —
*Addr1Hf —
*Addr2Hf —

TYTYTYTY

*RS3Lf

*RS7Lf

(3]
[2] I
1
[0] |

BumpHi[H,LJHf

BumpMed[H,L]Hf

-
~

\
[0]
~

BumpLo[H, LJHf
[7]

o)

\
(5]

~
[4]

~
(3]

~
(2]

\
]

=~

(0]
\

FBCnter

0,

(2 bits)

4

_ [39:44]

LpCnter
(LpCnter3)

Out{0:5]Hf

In[0:5]L

LpCnter3 (6-bits) is
shown, LpCnter1 and
LpCnter2 are similar

in FBCnter, NewHf forces
CntHf, so In value is

Generic Multi-bit
Half-adder

Carry

decremented as it is loaded

U

g

\ LoadBaseHf
~4

[54]

[10:18]

LE

ot
BaseEnabHf
Y

= PMALoadHf

= RefLoadHf

b

— ReflLoLf

RefHiLf

DstLoLf

DstHiLf

SrcLoLf

SrcHiLf

AuxLoLf

— AuxHiLf

MuxOHf

Mux1Hf

9

RefLoadHf ——
RefHiLf ——
RefLoLf ——

In[0:8]Hf
LoadHf
CntHiLf
CntLoLf

PMACnNtr

¢

RefCount[0:8]Hf 9 Ly

AN
Y

9,

PMAAdd

2N\

7

PMALoadHf ——m
DstHiLf ——
DstLoLf ——{

In[0:8]Hf
LoadHf
CntHiLf
CntLoLf

PMACnNtr

DstCount[0:8]Hf 9 ,

4

A
Y

7

ﬁ)

7

PMALoadHf ——!
SrcHiLf ——|
SrcLoLf ——f

In[0:8]Hf
LoadHf
CntHiLf
CntLoLf

PMACnhtr

SrcCount[0:8]Hf 9 ,

4

4-to-1 multiplexer

AN
Y

9,

7

PMALoadHf —
AuxHiLf ——p1
AuxLoLf ——

In[0:8]Hf
LoadHf
CntHiLf
CntLoLf

PMACntr

AuxCount[0:8]Hf 9 ,

7

AN
Y

4

B[8:1]

BO 9-bit adder

Sum

Note: load
overrides count

@~

Leaf cells (circular symbols) are
“Leaf Cells of Serializer" sheet.

Most cells have PipeHf and StepHf as
implicit inputs. The subscript / is indicated by
horizontal position in the schematic.

ABCoefSer
(ACoefSer)

xr X X §
LI

XOf[O:B]H! XPos[0:13]Hf

k1 9

5

IWord[22:24,26:27]Hf

CCoefSer

|AI /256

Adjust
(AAdjust)

Trail[S:0]H!

AXSum([7:0]Hf

CsSignHf

CTraill2:7JHf 6

9
IWord[19:27]Hf

IWord[22:24,26:27]Ht
5

ABCoefSer
(BCoefSer)

=] I

Q<D=

+

CChain

BYTrail[5:0]Ht

IWord[33:34]Ht -+>
CWord[0:6,15,16:22,31,36:63]Hf +>

Trail[5:0]Ht

Adjust
(BAdjust)

SignHf YPoslolzl 3JHf

NewHf ———————»=
2

CfgLatch
(ACfgLatch and BCfgLatch)

XoanH'
|

Ve
to AAdjust

Enl—!
FloatH

multiplexers built v

FloatH

Mantissa Latch

shift 1 stage
shift 4 stage

shift 2 stage

SE

left shift = ield + 5) % 8

A
152] {>o ShiH
53 | D ShaH

' j)j ShaH /

Mant63Hf := IFloatH && Word63H && EnH

IWord22H
o Sel [iJHf = TokEnabHf A TokCntrHf == i

IWord23Hf
FloatH SelNotH = ITokEnabHf + (TokCntrHf > 8)

5-bit down cntr
LE overrides CE

8/ i
= . IWord26H EnH
IWord27Hf

ExpSum(7:0H =
((expfield -1023 + 4)>>3)
R IWord24Hf
2 il FloatH
IWord27Hf

IWord[23:22]Hf

ExpSum7H is negative logic =
Note: ExpSum(5:7] are not IFloatH I ((ExpSum >>- 5) == 4)
explicitly computed;

TokEnabH is computed in

look-ahead fashion.

DPos13Hf

DPos12Hf

[07:03] DPos11Hf

DPos10Hf

DPos9Hf

DPos8Hf

[15:08]

PosPowers[03:23]Hf

[23:16]

1Al

DOffeHf

Whole[7:0]Hf

(+)

[2:0]
Position is an integer in the Pi
peHf and StepHf
A e A
: DPos[0:13]H thigbranch

Y

ROFf[0:6]Hf
Pipe1Hf i [8:6]

@ 4 DOff[0:6]Hf . ‘ (5]

Bit8 is CryHf

Sub-pixel offset is in the range
+/- 1-63/64, represented in sign-
magnitude form - OffSignHf is
signbit, OfféHf is one's bit, and
OffHf is 2**(i-6) bit.

-

Y
[7:0]

[15:8]

IWord[26:19]Hf
IWord27Hf —

[0:7]

[23:16]

[31:24] |

Mantissa Latch
]

[39:32]

T
|

[47:40] |

shift 1 stage
[55:48] |

shift 2 stage
shift 4 stage

[63:56] |

I"|<O_

o

IWord27Hf H Seleci[i]Hff:
TokEnabHf A
gy | TokCntrHf == i

IWord22Hf

FloatH
[62:55] 8/ IWoraHl FloatH
L IWord27Hf

7
ExpSum(7:0JH = FloatH
((expfield -1023 + 4)>>3) NewHf

5-bit down cntr

(5]
(6]
U]

IFloatH Il ((ExpSum >> 5) == 4)

ExpSum7H is negative logic

wng oo wns 0D

leppe 1iq-8 . i8ppe 19-8

I
ipeHf

P

-
(]
T
T
<
(&)
=
(/]
()

low.

IS

Hf

ign

CryHf must be low

S

wns oo
19ppE-jey 11g-8

U up

l
Pi

SignHf

SerDelay
Serinvert

SerNegate

[40:63] 24

Test[0:5]Hf 6{

00xxxx

_ [32:39]

011000
.

011111

100000
.
°
°
100111

101000
.
.

o
101111

110000
[
.
.
110111

64 -> 1 latching multiplexer

111000
.
°
.
111111

DSel[i]H = (Test[2:0]Hf == i)

]
2

pre-charged here, when Test[2:0]H = 000, so VAN
evaluated low throughout chip j IdleH is only valid then ?

these are valid on Diag[0:5]L

0] "R read
N{1]_"T ready"

N.2] "RFIFO empty" - |—|
N3] "TFIFO empty" q

N.4] "done" a lﬁ‘

N5] "instr pending”

IdleHf

P Instro3L.

P Instr13L

Instro1L.
Instro1H
[J vdd
Instro4H
Instrodl.
Il GND_LD
P InstrosL.
Instro5H
GND
P instro6H
Instr12H
Instr1 2L
Instri4H
Instr17L.
Al Instr17H

M Instri4L
TnstrisH

P instrieH
InstrigH
Tnstrial

H GND_LD

Pl instrist

Instro2L
GND_LD
Instro7L
Nl instro7H
InstrosL
GND_LD
P instrooL
instriOH
Nl instrioL
Instr11L
nstri1H
dleH
GND_LD
GND
InstrisL
GND_LD

W GND_LD
P instro2H

Nl Instro3H

M InstrosL

B GND_LD
P instro8H

N instrooH

[vdd

Il GND_LD
Nl Instr13H

Il GND_LD
& InstrisL.

£
0

[~
[4]

g il

3] InstrooH
A instrooL.

Instr1gH

steH B
Test2H I
TestiH
TestoH £
Test3H B

GND
Test4H

GTLRef]
GND_LDRef ll) GTL references
GTLRef2
TestsH

il

TrstH N

TSt
GND_LD i
TriseL [N
TrLSBH [d

vas O TOP VIEW OF DIE

vdd [

SloadH B
SDat16H B
sDat1sH B8
SDat1sH
SDat20H
GNo [l
SDat21H B
SDat22H
SDat23H

SDat17H

i

M Grounds (and signal returns)
0O vdd (of various sorts)

N4 light-side/dark-side pair
LV-TTL output
B LV-TTLinput
O bi-directional 10

‘ Pinout for

PixelFlow Image Generation Controller

SDat24H B
SDatesH B
SDat26H
SDat27H
SDat2sH B
vdd [J
SDat2sH
GND
SDat3oH B
SDat31H B
GND
GND
ECkL [J
ECKkH [J
vad [
Vad 1]
ResetH B
soviH &
STFullH [Az2e

i

| 4
§%§j
23

S GND_LD
AddreL
AddréH

O vdd

W] Addr7H
Addr7t
GND_LD

P AddreL

R AddreH
GND
Tr80H

A TrBoL

g

|||
o
z
o
r
o

TrB1L
TrB1H

0
<
g

¥ TrB2H
TrB2L
GND_LD
W TrBaL
A TrB3H
GND
TrB4H
N TrBaL
[GND_LD
TrBsL
TrBsH
0 vad
[vdd
TrBEH

i

2

B GND_LD

Pl
TiB7H
GND

P TeATH

N Tra7L
GND_LD
TrA6L

Al TrasH

] vdd
VTSegOutH
VRSeqOutH

i

B
3
2
i

SemaOviH

B
28 5
(=] w
2
3
=4

P TrAsH
Rl TrAsL
GND_LD
TrAdL
R TradH
[] vdd
TrA3H
TrA3L
B GND_LD
Pl TrazL
TrA2H

&

<
&

Pl TratH
A TraiL
GND_LD
TrAoL
A TraoH
M GND
220 fll GND

T

overall size =11025 pm x 11025 um

pad spacing = 344 lambda (12040 cum)
die-edge to pad center = 391 lambda
padcell left-edge to pad center = 172 lambda

241
243
245
247
249
251
253
255
257
259
261
263

NN NDN NN
NN
~SUWEWYw-JdWw

279

281
283
285
287
289
291
293
295
297
299
301
303
305
307
309
311
313
315
317
319

N

— O\ [T T o n B B N S T B o I |
SR P U R R Bl R R FARAARRE AR AR R R e B N RS A
AN AN AN A AN AN A AN NN ANNaaNNNAaAN UHI—'HHHHHHHHHHHHHHHHH
159
157
o~
I 155
' 153
| ////////// 15t
4 149
e e S S s 147
R R R AR R aR ey CedTErTe
S R R SR e e FREERCEEEREr CERCEE R EERE R s R 145
) R TR R FEATERE i 5 o
i EEEE LR R R LR B bR EE P R R et 143
GND. LD;IO‘ ggl
AddraL 29! 141
ik
sar 28 139
£
~ Nt e
Vel 6 291
i 135
£
L i —r
:
GND_B5 28
’ h i I
GNDLD2F 28 o 129
: il
1 ES 27 5127
: a2
: emplglt 3 125
HGA :
3 352_EG r;x:z ;;1”3 123
TrBdl
F—e—==500 i ML-PCB_Bpsed crinit 471 121
1 FrBSL 26!
i TYBSH 26 -
— £
— 15 VadWa CR R ——
TrCSH TrB6L 26
_______——-—' 117 TrCS5L GND_LD24 26
i GND_LD16 TrB7L 26. 119
1 TrcdL TrB7H 261
= 22 B 3 1t
i b e s 17
P - o 124 GND_LD17 SNOpiReL 23 Qlls
. 135 TrozL TIAGH 33
pmm——— U 126 Trc2H vdd_E2 25
/"“" 127 vad us VTSeqOutH 25 Qll}
= 128 TrcIH VRSeqOutH 25
’ 135 TrCiL VrSeqinH 251 ~—
1. GND_LD18 VRSeqInH 25 111
, e Sl &
/ 133 QID_W5 TxASH 347 109
= i e worides 4 ——
M 136 QD LD19 oNDLRAE 34 107
= s I B i
e 139 vdd Ws TR3H 241 105
1 SRFullH Tradl, 24
= HEE angltiF 48 103
53¢ e 1 il —
< 141 ses e 101
%" 147 TDI onp, £D30 339 99
148 TRST - TrAOL 23!
s 142 ne 3 x sz sz mrmzasms o gm X X gEd 21
131 3‘?3“3 B iR ER A Ry i”-‘5angia::"‘:zm::::m:::“’:as:mmwaémn E 97
! Fei eieigininin] GE g enig B Y Ity
B R P e PR T 2 et e 95
- e e L
2 aanes 3oeseach onnmInerescHnmInanea N InaNS 93
2 91
12 0 89
87
o 85
<f
83
81
HOUNEN AW A MmN~
Lo T T B e U I e B o B ol e e B B VR B o)) Mm-S o A
A O N~ N A A A" A NANNNNMOOMONOM SN NN N YW WO

S CATTER-foT Ton 15T T Ny

U\Q_\\.\ mv\hmn“
SCATTER PLOT
X mean = +0.42681 Y moan = +0.33478
X sdev = +0.07216 Y sdev = +0.06492
8.46 |
il _lL_
m @o&..—@ - . Qn ~pmo . —
" v L
z q-
g 0.372 - 7 rJ
=]
x| 13
18
0.328 R S S
2 |
G.Nmscn PR £' TR
3 2 .. —
0.264 , i
0.3 0.35 0.4 @.45 0.5 0.55
WAFER_NO
953069301 -
»H3\E3-02
BHAEW-B -+
o3BEW- ¢
588696-05 -
9539693-07 » LEFFPMOS
63IENB-(8 ©
*ABEWB-08 -
9HB/eX-10
638633-11 -
%36693-13 o
®38693-19 .
_ gu»woﬂm«

A% 35L:93

TOTAL P.O1

IV.2.5 IGC Microcode Assembler pg. 1

IV.2.5 IGC MICROCODE ASSEMBLER

The sequencers on the IGC are programmed using the IGC microcode asemblers, asmEMC
and asmTAS. Each assembler processes an input file <root>.ucode, containing microcode
source described below, and generates three output files: <root>_microcode.h, defines an
array static int root_microcode[] containing the data to be loaded into the sequencer
microcode store. <root>_opcodes.h, contains macro definitions which generate command
opcodes for specific instructions. The third, <root>_commands.h, contains inline C++
functions built on top of the <root>_opcodes.h macros, which allow the user to specify an
IGC command with a single function call. The file <root>_microcode.h is included in
application code which initializes the IGC; <root>_commands.h and <root>_opcodes.h are
included in application code which generates IGC commands. AsmEMC is used to
generate microcode for the EIGC (which generates micro-instructions for the EMC array),
and asmTAS is used to generate microcode for the TIGC (which generates micro-
instructions for the TASICs and connected texture/frame memory).

EMC Instructions
EMC instructions may be divided into 2 basic types:
1) those which do not use the linear expression evaluator
2) those which use the linear expression evaluator, in one of three ways:
(a) a one byte 'mask’ field is passed down as C, tree compute F(x,y) = C
(b) tree computes F(x,y) = C from supplied C coefficient
(c) tree computes F(x,y) = Ax + By + C from supplied ABC coefficients
For instruction types 2a and 2b, the coefficients may be of 4 types:
1) 32-bit integers
2) 64-bit integers
3) 32-bit single-precision floats
4) 64-bit double-precision floats ('doubles’ in C)
Input File for Microcode Assembler.

Each line in the input file falls in one of four categories:

(1) a template for specifying the opcode for an instruction

PixelFlow System Documentation IV.2 Image Generation Controller
Rev 5.0 jge 11/18/97

IV.2.5 IGC Microcode Assembler pg. 2

(2) a specification of the rules the arguments to an arguments must obey
(3) a microcode word
(4) comment lines

Lines beginning with '%' define an instruction, and a template for building the specific
opcode. These lines are interlaced with the microcode word specification lines, so that the
placement of an opcode specification line relative to the microcode word specification lines
defines the entry point for the instruction (unless another entry point is explicitly specified
as described below). Multiple instructions may use the same entry point.

Lines beginning with 'A' define rules for the arguments to an instruction (the arguments in
the opcode specification line). Each rule applies to all subsequent opcode specifications,
until a new rule is given.

All other lines (except comments) define microcode words. The microcode words are
assigned to microcode store locations in ascending order, starting with address 0, with a 1-
1 correspondence between input lines and microcode store locations.

Any portion of a line lying to the right of a semi-colon (';') (including lines beginning with
a semi-colon, and empty lines) is treated as a comment.

Opcode specification.
Opcode template lines begin with the special character '%'. They are of the form:

%NEM(argl,arg2,...) [MCAddr:addr] [DstAddr:dst] [SrcAddr:src] [AuxAddr:aux] [nobase]
[LpCntl:lpentl] [LpCnt2:1pent2] [LpCnt3:lpent3] [FBCnt:fbent]
[con | lin] [int32 | int64 | {1t32 | flt64]
[FBytes:fbytes] [mask:mask] [A:avalue] [B:bvalue] [C:cvalue]
[meta [ignore] [maux] [pseq] [pfif] [vseq] [vfif] [pic] [grab] [yield]
[loadmac {alive:ALIVE] [leftend:LEFTEND] [rightend:RIGHTEND]]
[12rarm:L2RARM [12rfst:L2RFST] [12rlst:L2RLST] [12rbytes:L2RBYTES]]
[r2larm:R2LARM [r21fst:R2LFST] [r2llst:R2LLST] [r2lbytes:R2ZLBYTES]]
[cfg:CFG] [Ronly] [Tonly]

NEM is a mnemonic name for the instruction, and argl, arg2, etc. are a set of optional
mnemonics for instruction arguments. The remaining fields are also optional. There must
be no spaces in the list argl, arg2,

PixelFlow System Documentation IV.2 Image Generation Controller
Rev 5.0 jge 11/18/97

IV.2.5 IGC Microcode Assembler pg. 3

MCAddr specifies an alternate entry point for the instruction.

DstAddr, SrcAddr, and AuxAddr specify starting values to be used for the three 9-bit pixel-
memory address counters. Thus 3 separate pixel-memory operands (3 sequences of pixel-
memory addresses) can be used in an instruction. The token nobase causes the base-offset
register to be inhibited.

LpCntl, LpCnt2, and LpCnt3 are starting values to be used for the loop counters used by
the microcode sequencer. FBCnt specifies the starting value for the FBCnter, a 2-bit
counter. FBCnt may be specified only for instructions which do not use coefficients or the
one-byte mask value.

FBytes specifies the number of fractional bytes for floating-point or fixed-point
coefficients. When the tree result is clocked out of the LEE, the first fbytes bytes will
represent the fractional portion of the LEE result. In addition, the FBCnter is loaded with
the value ((fbytes-1) modulo 4). (For FBCnt, the value put in the opcode field is
incremented, so this decrement is neutralized). A tight loop on the FBChnter is used to clock
out the fractional bytes; note that the FBCnter will be loaded with 3 when fbytes=0, so this
case cannot be handled in the loop.

The con and lin tokens are mutually exclusive and indicate that the instruction includes
linear expression evaluator coeffcients, either just C, or A, B, and C, respectively.

Together, the con, lin, int32, int64, flt32, and fit64 tokens indicate whether or not the
instruction uses the linear expression evaluator result, the mode of the LEE, and the type of
coefficients to be used.

The presence of the mask: token means that the instruction uses a special one-byte value as
the C coefficient and that the LEE works in constant mode. The first byte of the LEE result
is just the specified byte, and any additional bytes are garbage (so only one byte should be
used).

The A:avalue, B:bvalue, and C:cvalue tokens indicate that the specified coefficient should
be set to a constant value or a value which is an expression involving the arguments. (If
int64 is also specified, the coefficient expression must be of the form lo @hi, where lo and
hi are expressions for the low and high-order 32-bits of the 64-bit integer coefficient).

The arguments dst, src, aux, Ipcntl, Ipcnt2, Ipcnt3, fbent, and fbytes must be constant
expressions involving the 'args' which are interpretable by the C pre-processor, and should

PixelFlow System Documentation IV.2 Image Generation Controller
Rev 5.0 jge 11/18/97

IV.2.5 IGC Microcode Assembler pg. 4

. use parentheses liberally to avoid incorrect evaluation if the 'args' are complex expressions
in invocations of the instructions. Valid ranges for the actual arguments passed in the
opcode are as follows:

FIELD | ARGUMENT MIN MAX
MCAJddr | addr 0 1023
DstAddr | dst 0 255
SrcAddr | src 0 255
AuxAddr | aux 0 255
LpCntl | Ipcntl 0 8 F
LpCnt2 | Ipcnt2 0 16
LpCnt3 | Ipcnt3 0 64
FBytes | fb 0 3

1t rangeis 0 to MAX-1 or MIN+1 to MAX for any given instruction, depending on the how the
microcode is written

<< DISCUSS THE PMA BASE_REGISTER OFFSET FUNCTION >>

For each opcode specification line, asmEMC places a macro definition in the output file
EMC_opcodes.h of the form

I_NAME(args) ...

This macro defines the low 32-bit word of the opcode. If the instruction requires the long
64-bit opcode (if any of the tokens LpCnt2:, SrcAddr:, or AuxAddr: are used) asmEMC
generates a second macro of the form

P_NAME(args) ...
which defines the high 32-bit word of the opcode.
Rules specification.
Since the specification for the arguments generally are expressions involving the 'args', the
assembler cannot do error checking; rather, the code generating IGC commands must

insure that valid values will result. Failure to detect errors can result in the IGC hanging.
. The microcode assembler provides some assistance in providing valid arguments. For each

PixelFlow System Documentation IV.2 Image Generation Controller
Rev 5.0 jge 11/18/97

IV.2.5 IGC Microcode Assembler pg. 5

nstruction, a “rule” can be specified, which is a test included in the in-line function call, and
applied at run-time (if the compiler is allowed to select this feature).

Lines specifying rules must begin with ‘*’, followed by a logical expression (in C).
The following macros are provided (in IGCChk.h) to aid in writing rules:

IGCMEM(sb,len) the specified memory segment lies wholly
within one of the areas of pixel-memory

IGCRANGE(val,min,max) val lies between min and max, inclusive

IGCNOVERLAP(Isbl,lenl,Isb2,len2) | the two memory segments do not overlap at all

IGCNPARTIAL(Isbl,lenl,Isb2,len2) | the two memory segments do not overlap, or else
they have the same LSB (not necessarily the
same length)

IGCMULT (val,dic) val is an exact multiple of div

An example rule is as follows:
A IGCMEM(dst,len) && IGCRANGE(len,1,8) && (tmp > 1)

This says that mem/dst:len] must be a valid memory segment, len must be in the range 1
through 8, and the argument #mp must be greater than 1.

Each rule applies to all subsequent instructions. If a rule refers to operands that do not
exist for a given instruction, the generated header files will end up causing multiple errors
at compile time; this must be avioded. The rule can be set back to “null”, using a single line
consisting of ‘»’.

Microcode word specification.

All other lines in the input file, except blank lines and comment lines (beginning with a
semicolon ";") are specifications of microcode words, one line to a microcode word. A
microcode specification lines contains a number of optional but inter-dependent fields. They
are divided into several groups:

(1) sequencer control - control the sequencer branching
(2) pixel-memory control (address and read/write)

PixelFlow System Documentation IV.2 Image Generation Controller
Rev 5.0 jge 11/18/97

IV.2.5 IGC Microcode Assembler pg. 6

‘ (3) linear expression evaluator function
(4) pixel-ALU instruction

Sequencer control is specified using one of the following tokens:

<default> unconditionally increment (go to next address)

done terminate this instruction (begin next instruction, otherwise idle)

done? terminate this instruction if new one waiting (otherwise continue)

done:N terminate this instruction if new one waiting (otherwise branch)

br:n unconditionally branch to offset n (positive or negative)

bzX:N branch if condition X is zero (continue otherwise)

bnzX:N branch if condition X is non-zero (continue otherwise)

jsr:N jump to subroutine (unconditionally)

jzX:N jump to subroutine if condition X is zero (continue otherwise)

jnzX:N jump to subroutine if condition X is non-zero (continue otherwise)

rzX return from subroutine if condition X is zero (continue otherwise)

mzX return from subroutine if condition X is non-zero (continue otherwise)

rzX:N return from subroutine if condition X is zero (branch otherwise)

mzX:N return from subroutine if condition X is non-zero (branch otherwise)
. The branch condition X may be one of the following:

condition is contents of Loop Counter 1
condition is contents of Loop Counter 2
condition is contents of Loop Counter 3
condition is contents of FBytes counter
ext[012] condition is external condition input St[0:2]

WN =

Complex branches, based on logical-or’s of the branch conditions, are also possible; talk to
Eyles for details.

The branch address, or subroutine jump address, N, is one of: =N
absolute address N

[+-In relative address n (offset +/- n from current address)
label address specified by label from label table

Labels are specified with tokens of the form:

Label:label

PixelFlow System Documentation IV.2 Image Generation Controller
Rev 5.0 jge 11/18/97

IV.2.5 IGC Microcode Assembler pg. 7

The label must begin with a letter of the alphabet.

The done token is special. It specifies termination of the instruction; if the next instruction
is available, control will jump to the starting microcode address for that instruction,
otherwise control branches to 0, the idle address. For the done? token, if another
instruction is available, control will jump to the starting microcode address for that
instruction, otherwise controls jumps to the next address; for the done?:N token, control
branches to the specified branch address if no new instruction is available.

Additional optional tokens control the loop counters (in module LoopCount):

cntl decrement loop counter 1 (ignored if 'done’ is also specified)
cnt2 decrement loop counter 2 (ignored if 'done’ is also specified)
cnt3 decrement loop counter 3 (ignored if 'done’ is also specified)
cntF decrement FBytes counter (ignored if 'done’ is also specified)

If a loop counter decrement is specified for a word containing the done token, it is ignored
since the instruction ends or control branches to idle address 0. If a loop counter decrement
is specified for a word containing the done? token, the decrement occurs if and only if the
conditional done fails and control continues to the next microcode address.

Control of pixel-memory address is by the following tokens:

ref use Refresh address counter
ref+ use Refresh address counter, then increment it
ref++ use Refresh address counter, then increment it by 2
ref- use Refresh address counter, then decrement it (DEFAULT)
dst use Destination address counter
dst+ use Destination address counter, then increment it
dst++ use Destination address counter, then increment it by 2
dst- use Destination address counter, then decrement it
STC use Source address counter
src+ use Source address counter, then increment it
src++ use Destination address counter, then increment it by 2
src- use Source address counter, then decrement it
aux use Auxiliary address counter, then increment it
aux+ use Auxiliary address counter
PixelFlow System Documentation IV.2 Image Generation Controller

Rev 5.0 jge 11/18/97

IV.2.5 IGC Microcode Assembler pg. 8

aux++ use Destination address counter, then increment it by 2
aux- use Auxiliary address counter, then decrement it

If any increment or decrement is specified in a microcode word containing the done token,
it is ignored since the counters will be loaded with the respective starting addresses from
the next instruction, or control jumps to idle. For the conditional done (done?), the counter
will be incremented or decremented if and only the conditional done fails and controls
continues to the next microcode address.

Control of pixel-memory read/write is by the tokens read, 'wrtR, 'wrtS, and fwrtR. If it is
not given, the specified pixel-memory address is read on this cycle. If it is given, the value
on the 'sum' output of the pixel-ALU is written to the specified pixel-memory location
provided either (1) the pixel -ALU Enable register is set, or (2) the ALU instruction
specified FrcEn on the previous microcycle (see below). Note that pixel-memory is always
read, even on a write cycle.

Linear expression evaluator function is controlled by the token:
tree

This causes a value of the linear expression evaluator output to appear at the input to the
pixel-ALU. This value will remain valid until the next tree token is encountered. When
tree is asserted on the same word as the done token, it causes the final byte of the LEE
result to be generated; that byte (or the byte computed by passing that byte through the
ALU) will not be available until the next clock cycle, which will be after the instruction has
completed. Thus, normally done and tree would not be asserted in the same microcode
word, unless as part of a special instruction meant to be used in conjunction with another
instruction which processes the final byte.

The pixel-ALU instruction is specified by several sets of tokens, each controlling one
of the functional blocks of the pixel-ALU. These are as follows:

The pixel-ALU is based on a standard ALU core, consisting of two universal function
generators to produce a "propagate” and "generate” function, a sum-generator exclusive-or
gate, and a Manchester carry-chain. The propagate and generate function blocks can
generate any of the possible 16 logical functions of the byte-wide A and B inputs. The
carry-in for the carry chain can be either a logical one, a logical zero, the Carry register

PixelFlow System Documentation IV.2 Image Generation Controller
Rev 5.0 jge 11/18/97

IV.2.5 IGC Microcode Assembler pg. 9

input, or the inverse of the Carry register.

The core is fed by a multiplexer which selects two of three possible inputs: the contents of
the R register, the contents of the M register, or the value from the linear expression
evaluator tree; the multiplexer also has a mode, for accelerating multiplies, in which it
selects the R register and the M register logically-and'ed with the LSB of the S register. It
also has 4 modes which allow accessing the R register of the neighboring PEs; using this
requires knowledge of how the PEs are mapped to pixels.

On each cycle, the core generates the standard set of four status flags, which can be
conditionally latched into CCLatch. The flags are:

asserted when output is zero

asserted when MSB of output is one

asserted if result of two's complement operation is negative
overflow flag (exclusive-or of N and L flags)

< 0 Z N

The Enable register is used to selectively Enable pixel processors in the very small grain
SIMD engine represented by the rasterizer. It can be set, its value inverted, its value
pushed onto or popped from a one level deep stack, and its value logically-and'ed with one
of the four ALU status flags, or the Carry register, or the inverse of any of these five flags.

The Sum and Carry outputs of the ALU core go into a shifter whose outputs are latched
into the S and R registers and the Carry register. The shifter can simply pass the core
output to the S,R, and Carry registers, or it can perform one bit left or right shifts involving
the R register and the Carry register, or it can perform a 16-bit right shift using both
registers. The R, S, and Carry registers can all be conditionally loaded.

The memory bus, DBus, interfaces to the pixel-ALU via the M, S, and R registers. The S
and R registers can drive the DBus, either unconditionally, or qualified by the Enable
register (the register contents are driven onto the DBus only if Enable=1). The M register
can latch the DBus values. Thus, the S and R register values can be written into memory,
unconditionally, or condtioned by the Enable, or the S and R regsiters can be recirculated
into the M register, or memory can be read into the M register.

The input multiplexer is controlled by the following set of 4 tokens, each of which
slects the A and B inputs to the function generators in the ALU core, as follows:

PixelFlow System Documentation IV.2 Image Generation Controller
Rev 5.0 jge 11/18/97

IV.2.5 IGC Microcode Assembler pg. 10

token A inPut B input I
MT M register tree result I
MR M register R register |
TR tree result R register

(MR M register (conditional) R register

MR- M register R register of lower-numbered PE

MR+ M register R register of higher-numbered PE
(M)R- M register (conditional) R register of lower-numbered PE
(M)R+ M register (conditional) R register of higher-numbered PE

The (M)R* tokens are meant to be used in a multiply loop. The A input is locally
controlled by the LSB of the S register. If the LSB is 1, then the A input is the contents of
the M register, otherwise it is zero.

Each function generator can produce any of the 16 possible logical functions of the two
ALU core inputs A and B; however, only a subset of the 256 possibilities are available,
since many are not useful. The function generators are controlled by the tokens
L:logical_function and F:arithmetic_function. The following tokens are defined:

Token P function G Function
L:ZERO all zeroes (the byte 0x00) (default) zeroes (default)
L:ONE all ones (the byte Oxff) ZEroes

L:A the A input ZEroes

L:B the B input ZEroes

L:Abar ~A (the ones-complement of the A input) Zeroes

L:Bbar ~B (the ones-complement of the B input) Zeroes
L:AandB A * B (bitwise logical-and of A and B) Zeroes
L:AnandB ~ (A *B) Zeroes
L:AandBbar | A * ~B ZEeroes
L:AbarandB | ~A *B ZEeroes

L:AorB A + B (bitwise logical-or of A and B) Zeroes
L:AnorB ~(A+B) Zeroes
L:AorBbar | A+~B Zeroes
L:AbarorB | ~A+B Zeroes
L:AxorB A " B (bitwise logical-exclusive-or of A and B) Zeroes
L:AxnorB ~(A"B) Zeroes

PixelFlow System Documentation IV.2 Image Generation Controller

Rev 5.0 jge 11/18/97

IV.2.5 IGC Microcode Assembler pg. 11

F:2A Zeroes I

A
F:2B ZEroes B l
F:A-1 ~A A
F:B-1 ~B B
F:A+B A"B A*B
F:A-B-1 ~(A"B) A*~B
F:B-A-1 ~(A"B) ~A*B

The P and G functions feed a standard carry chain. Note that the combinations defined
above insure that the P and G functions are bit-wise mutually exclusive.

The "carry in" to the carry chain is specified using the following tokens:

token carry in

c=0 logical zero (default)
c=1 logical one

c=cry the Carry register value

c=crybar the logical-inverse of the Carry register value

The ALU core produces the following outputs:
Sum: the byte-wide output generated by a standard exclsuive-or sum generator
from the "propagate” bit and the value of carry-in at that bit
Cout: the carry-out value of the carry-chain
Nflg: status flag equal to the MSB of Out
Zflg: status flag asserted if and only if Out is all-zeroes
Vflg: status flag asserted if result of a 2's complement operation overflows
Lflg: status flag asserted if result of 2's complement operation is negative

These ALU core outputs can then be latched.
The four flags are simply loaded into a 4-bit register if and only if the token
cc load ALU status flag register

is asserted. The values in this register can be used to modify the Enable register, as
described below.

The Enable register is normally used to qualify conditional writes into pixel-memory. It is

PixelFlow System Documentation IV.2 Image Generation Controller
Rev 5.0 jge 11/18/97

IV.2.5 IGC Microcode Assembler pg. 12

sometimes used for temporary storage as well. There is also an Enable-Hold registers, a
one-level stack for the Enable register; this stack is not meant to be visible to the
programmer. The Enable and Enable-Hold Register function is controlled by the following

tokens:

token enable register action | enable-hold register
<default> | <save> <save>

setenab enable = 1 <save>

enabinv enable = ! enable <save>

andcry enable &&= carry <save>

andcrybar | enable &&= !carry <save>

andmsb enable &&= Nflg <save>

andmsbbar | enable &&= INflg <save>

andzero enable &&= Zflg <save>

andnonz enable &&= !Zflg <save>

andovf enable &&= Vflg <save>

andovfbar | enable &&= !Vflg <save>

andlt enable &&= Lflg <save>

andge enable &&= !Lflg <save>

andpush <save> enable-hold = enable
pop enable = enable-hold <save>

popand enable &&= enable-hold <save>

The treatment of the Sum and Cout outpus is far more complicated. These values go into
the shifter, which feeds the R and S registers, and the Carry register. The shifter and these
registers are controlled by the following mutually exclusive tokens:

token R reEister S register Carry register

<default> | <saved> <saved> <saved>

IdR Sum <saved> <saved>

1dRC Sum <saved> loaded w/ Cout (if Enable=1)

1dS <saved> Sum <saved>

1dSC <saved> Sum loaded w/ Cout (if Enable=1)

ror Sum>>1, Carry into MSB | <saved> loaded w/ LLSB of Sum (if Enable=1)
urRS Sum>>1, Cout into MSB S>>1, Sum0->MSB <saved>

stRS Sum>>1, Lﬂg into MSB S>>1, Sum0->MSB loaded w/ Cout (if Enable=1) I

PixelFlow System Documentation

IV.2 Image Generation Controller
Rev 5.0 jge 11/18/97

IV.2.5 IGC Microcode Assembler pg. 13

The token ror (rotate right) performs a single-bit right shift on the Sum output and loads it
into the R regsiter, with a rotate through carry; this means that the LSB of Sum is shifted
into the Carry register, and the old contents of the Carry register is loaded into the MSB of
the R register. As with all operations, the Carry register is upadted only if the pixel is
Enabled. There is no rol token; a left-shift can be accomplished within the ALU core using
the token L:2A or L:2B.

The tokens urRS and srRS treat the R and S registers as a single 16-bit register (R is
upper-byte, S is lower-byte). The ALU core Sum output is right-shifted and loaded into
the R register, and the LSB of Sum is shifted into the MSB of the S register, with the
remaining bits of the S register right-shifted (the LSB of the S register is discarded). The
token urRS puts the ALU core carry-out, COut, into the MSB of the R register, and so is
useful for unsigned multiplies. The token srRS puts the ALU core less-than flag, Lflg,
into the MSB of the R register, and so is useful for signed multiplies. Note that srRS can
also be used to sign-extend the Sum value: provided one of the ALU core inputs is zero and
the carry-in is zero, then Lflg will be equal to the MSB of the other ALU core input, so the
value loaded into the R register will be equal to the value of other ALU core input
arithmetically shifted right (with sign-extension).

The tokens ext[0:7] are for strobing the external operation outputs. Each token strobes
the respective external operatin output of the IGC (ExtOp[i]H) for one cycle. For
example, asserting the token ‘ext4’ causes ExtOp4H to go high for cycle. It must be
remembered that there is a severak cycle latency between when the microcode sequencer
executes the microcode word containing the ‘ext[i]’ token and when the IGC output
actually is asserted.

IV.3.4 — 3 General programming considerations.
Some important considerations when writing microcode for the IGC:

Loop counters. When implementing a loop using the token bnzX:N, where N is zero
or negative, some microcode word in the loop must contain the token entX; otherwise, the
sequencer will hang in the loop (unless the loop counter was at O upon entering the loop).

It makes no sense to specify one of the count tokens (cntX) with the done token, because
the done token ends the instruction and causes the loop counters to be loaded with the
initial count values for the next instruction. If done and a entX token are specified in the
same microcode word, asmEMC prints a warning and.....

PixelFlow System Documentation IV.2 Image Generation Controller
Rev 5.0 jge 11/18/97

IV.2.5 IGC Microcode Assembler pg. 14

The loop counts may also be used as flags, to control conditional execution of portions of
the microcode sequence. That is, the same microcode section may be used to implement
more than one instruction, by specifying zero or non-zero values for LpCntl or LpCnt2 in
the opcode specification, and using bnzl, bnz2, and br branches. For example:

%INSTRUCTION_A() LpCntl:1
%INSTRUCTION_B() LpCntl:0
bnz1:2 <other microcode tokens> ; executed for both instructions

br:2 <other microcode tokens> ; exceuted only for instruction B
<microcode tokens> ; executed only for instruction A
<microcode tokens> ; executed for both instructions

Pixel-memory address counters. It makes no sense to specify any of the post-
decrement or post-increment pixel-memory address tokens in a 'done' microcode word,
since the executing the 'done’ word ends the instruction and causes the address counters to
be loaded with the pixel-memory addresses for the next instruction. If any post-increment
of post-decrement of pixel-memory address is specified in the same microcode word as
done, asmEMC prints a warning and ignores the post-increment or post-decrement.

Control of pixel-ALUs. When none of the pixel-ALU control tokens are specified, the
pixel-ALU's are effectively in a "no-op" state, since the Carry, Condition code, and Enable
registers are saved, and the M, R, and S registers are re-cycled.

Programming conventions. By convention, only the Carry register, the Enable
register, and the S Register are to be used to convey information between separate IGC
instructions. By contrast, the M and R Registers, the ALU Status Flag register, and the
Enable-Hold Register are used only within an IGC instruction. Their values are assumed
to be undefined at the beginning of each new instruction.

This convention is adopted because: (1) the rasterizer documentation specifies the effect of
each instruction on only the Enable, Carry, and S Registers, and (2) the EMC_ALUSave
instruction backs up only these registers (during a T FIFO interrupt sequence). This
convention could be modified, but only for compelling reasons.

PixelFlow System Documentation IV.2 Image Generation Controller
Rev 5.0 jge 11/18/97

