TYPE 1268-A

AUTOMATIC BATTERY CHARGER

TYPE 1268-P1 BATTERY DRAWER

TYPE 1268-9602 BATTERY

GENERAL RADIO COMPANY
OPERATING INSTRUCTIONS

TYPE 1268-A

AUTOMATIC BATTERY CHARGER

TYPE 1268-P1 BATTERY DRAWER

TYPE 1268-9602 BATTERY

Form 1268-0110-A
July, 1963

Copyright 1963 by General Radio Company
West Concord, Massachusetts, USA

GENERAL RADIO COMPANY
WEST CONCORD, MASSACHUSETTS, USA
TABLE OF CONTENTS

Section 1. INTRODUCTION .. 1

Section 2. PRINCIPALS OF OPERATION 1
 2.1 General .. 1
 2.2 Silicon-Controlled-Rectifier and Trigger Circuits 1
 2.3 Differential Amplifier (Comparator) 2
 2.4 Type 1268-4000 Plug-In Unit 2
 2.5 Metering ... 2

Section 3. INSTALLATION .. 3
 3.1 Mounting of the Battery Charger 3
 3.2 Installation of Battery and Storage Drawer 3
 3.3 Connection of Charger to AC Power Line 4
 3.4 Connection of Battery Load (Type 1116-B) 4

Section 4. OPERATING PROCEDURE 5

Section 5. SERVICE AND MAINTENANCE 5
 5.1 Warranty ... 5
 5.2 Service ... 5
 5.3 Voltage Measurements 6
SPECIFICATIONS

TYPE 1268-A AUTOMATIC BATTERY CHARGER
Constant-Current Charge: 6 hours at 4 amperes, nominal.
Trickle Charge: 33.8 volts ± 2% is maintained at the battery.
Power Required: 105 to 130 (or 210 to 260) volts, 60 cps, 240 watts maximum.
Ambient Temperature Range: 0 to 50°C.
Cabinet: Rack-bench.
Dimensions: Bench model — width 19, height 5 3/4, depth 12 inches (485 by 135 by 305 mm), over-all; rack model — panel 19 by 5 3/4 inches (485 by 135 mm), depth behind panel 11 1/4 inches (295 mm).
Net Weight: 29 1/2 pounds (13.5 kg).

TYPE 1268-P1 BATTERY DRAWER AND TYPE 1268-9602 BATTERY
Voltage: 28 volts dc, nominal.
Ampere-Hours: 15 ampere-hours. At 4.3 to 3.2 amperes required by Type 1116-B Emergency Power Supply, batteries will run at least 3 1/2 hours.
Cabinet: Relay-rack.
Dimensions: Width 19, height 12 3/4, depth 19 inches (485 by 315 by 485 mm), over-all.
Drawer Net Weight: 25 pounds (11.5 kg).
Battery Net Weight: Approximately 90 pounds (41 kg). Battery shipped direct from supplier.
Figure 1. Panel view of the Type 1268-A Automatic Battery Charger and the Type 1268-P1 Battery Drawer, with the Type 1268-9602 Battery.
SECTION 1

INTRODUCTION

The Type 1268-A Automatic Battery Charger maintains the Type 1268-9602 Battery at optimum charge and will restore this battery from complete discharge to full charge in six hours. The Type 1268-9602 Battery and the Type 1116-B Emergency Power Supply are designed to supply power to a Type 1120 Frequency Standard under emergency conditions. The Type 1268-A can also be used to maintain other nickel-cadmium batteries with electrical characteristics similar to those of the Type 1268-9602.

As soon as line power is restored after a power failure, a constant-current charge of about 4 amperes is applied to the battery. After six hours of this charge, a timer changes the operating mode to constant voltage. This "float" voltage, or trickle charge, automatically maintains the battery at optimum charge regardless of the current required.

SECTION 2

PRINCIPLES OF OPERATION

2.1 GENERAL.

Variable dc output is obtained from phase-controlled silicon-controlled rectifiers (SCR's) in a full-wave bridge rectifier. A unijunction-transistor (UJT) trigger generator provides phase control. The repetition rate of the UJT is controlled by a dc differential amplifier.

The differential amplifier compares either a voltage proportional to the charging current (for constant-current operation) or the battery voltage (for "float"-voltage condition) against a Zener-diode reference voltage.

2.2 SILICON-CONTROLLED-RECTIFIER AND TRIGGER CIRCUITS.

The output from the full-wave rectifier (about 160 volts peak) is clipped by a 20-volt Zener diode (see Figure 2). The clipped waveform synchronizes the unijunction trigger generator at 120 cps. The waveforms at the UJT and SCR's are shown in Figure 3. The left-hand waveforms are for a small resistor R (in Figure 2) and the right-hand waveforms for a large R.

The clipped sine wave (Figure 3a) is applied to base 2 of the unijunction transistor and through an

![Figure 2. Simplified phase-control circuit of the Type 1268-A Automatic Battery Charger.](image)
RC network to its emitter. As soon as voltage occurs at point A (in Figure 2) the voltage at the emitter E of the UJT starts to rise as capacitor C is charged through R. When the voltage at the capacitor reaches about 50% of the voltage at point A, the UJT fires. A trigger pulse is applied to the silicon controlled rectifiers and whichever SCR has forward voltage across it turns on for the remainder of the half cycle. C is now discharged and the operation repeats with the beginning of the next half cycle. When the value of R is changed, the time required for the capacitor C to charge to the firing point 1 is changed.*

The same effect is achieved with a transistor as shown in Figure 4. If Q1 is off, all the current through R flows into C. If Q1 is on, some of the charging current will be taken by Q1 and more time elapses before C is charged.

2.3 DIFFERENTIAL AMPLIFIER (COMPARATOR).

Figure 5 shows the basic configuration of the differential amplifier in the constant-voltage operating mode ("float" voltage to the battery). For balanced condition the base of Q2 must be at a voltage close to +E_b. The ratio of R1 and R2 determines the battery voltage required for this condition. If the battery voltage drops, the base of Q2 moves positive and Q2 draws more current. This results in a decrease in current through Q1 and the conduction angle of the SCR's increases to increase the battery voltage.

Figure 6 is a simplified schematic diagram for constant-current charging. R2 of Figure 5 is replaced by a photoconductor, R2A. This photoconductor is illuminated by a lamp in the battery lead. When the charging current is increased, the brilliance of the lamp is increased and reduces R2A. This reduces the current through Q2, increases the current through Q1, which reduces the rectifier output.

A timer changes operation of the charger from constant-current mode to constant-voltage mode. In the complete schematic diagram, Figure 8, the timer is shown in the current mode.

3.1 MOUNTING OF THE BATTERY CHARGER.

The Automatic Battery Charger is available equipped for either bench or relay-rack mounting. For bench mounting (Type 1268-AM), aluminum end frames are supplied to fit the ends of the cabinet. Each end frame is attached to the instrument with two panel screws and four No. 10-32 round-head screws with notched washers.

For rack mounting (Type 1268-AR), special rack-mounting brackets are supplied to attach the cabinet and instrument to the relay rack (see Figure 7). These brackets permit either cabinet or instrument to be withdrawn independently of the other.

d. Toward the rear of each bracket, put a thumb screw (D) through the slot in the bracket and into the hole in the side of the cabinet.

e. On the rear of the cabinet, remove the two round-head screws that hold the cabinet to the instrument.

To remove the instrument from the rack, remove only the four panel screws with washers (C) and draw the instrument forward out of the rack. To remove the cabinet and leave the instrument mounted in the rack, remove only the two thumb screws (D) at the rear of the brackets and pull the cabinet back off the instrument from the rear of the rack.

3.2 INSTALLATION OF BATTERY AND STORAGE DRAWER.

To install the Type 1268-P1 Storage Drawer and 1268-9602 Battery in a relay rack, proceed as follows:

a. On each side of the relay rack, drill four holes on a horizontal line 5 5/64 inches down from the 9th hole from the bottom of the rack at 1, 5, 10, and 15 inches back from the front angle bracket (see Figure 11).
h. Attach the side brackets (A) to the relay rack with 10-32 screws (B), spacers (C and D), No. 10 lockwashers (E), and 10-32 nuts (F). See Figure 12.

i. Adjust the two side brackets so that they are equidistant from the bottom of the rack and level. Tighten the hardware.

j. Place the drawer slides (G) on the top surface of the side brackets. Attach with 6-32 screws (H), No. 6 lockwashers (J), and 6-32 nuts (K). See Figure 12. Do not tighten hardware.

k. Withdraw both drawer slides and assemble the drawer (L) between them with 6-32 screws (M), No. 6 lockwashers (N), and 6-32 nuts (O). See Figure 12.

l. Adjust the drawer assembly so that the bottom edges of the drawer are equidistant from and parallel to the edges of the drawer slides. Tighten the hardware that holds the drawer to the slides.

m. With the drawer slides withdrawn, push the stationary parts of the slides against the inside surface of the front of the relay rack. Slide the drawer assembly in so that the front of the drawer is flush with the other panels in the rack. Tighten the hardware that holds the drawer slides to the side brackets (refer to step d).

n. Solder the terminal-and-lead assembly, 1268-0200, to the positive terminal of the terminal mounting device, PL101. See Figure 13.

ñ. Solder the terminal-and-lead assembly, 1268-0201, to the negative terminal of PL101. See Figure 13.

3.3 CONNECTION OF CHARGER TO AC POWER LINE.

When the Type 1268-A Automatic Battery Charger is used with a Type 1116-B Emergency Power Supply, connect the Battery Charger to the power outlet (marked 1268-A) on the rear skirt of the Type 1116-B with the power cord provided. To connect the Battery Charger to an early model of the Type 1116-B which does not have this power outlet, contact the General Radio Service Department for information to modify the Type 1116-B. A Type 1268-4000 Plug-In Unit must also be connected (see Figure 10). When you are not using the Type 1116-B, the Battery Charger may be connected to the power line directly. In either case, check that the source of power is as indicated by the legend at the input socket at the rear of the Battery Charger.

Connect the Type 1268-A to a source of power as indicated by the legend at the input socket at the rear of the instrument, using the power cord provided. While instruments are normally supplied for 115-volt operation, the power transformer can be reconnected for 230-volt service (see schematic diagram, Figure 8). When changing connections, be sure to replace line fuses with those of current rating for the new input voltage (refer to Parts List). Appropriate measures should be taken so that the legend indicates the new input voltage. On instruments changed from 230 to 115 volts, this simply means removal of the 230-volt nameplate; a 115-volt legend is marked beneath. For instruments changed to 230 volts, a nameplate (Type 5590-1667) may be ordered from General Radio.

NOTE

A motor-driven timer is used in this instrument. Operation at 50 cps will not damage the instrument but will increase constant-current charging time to about 7 1/4 hours. This may reduce battery life.

3.4 CONNECTION OF BATTERY LOAD (Type 1116-B).

Connect the Type 1116-B Emergency Power Supply to the terminal strip in the rear of the Type 1268-A Automatic Battery Charger.
SECTION 4

OPERATING PROCEDURE

4.1 OPERATING CONDITIONS.

During the constant-current charging the battery voltage will rise to over 40 volts. The current will be about 4.3 to 4.5 amperes at 30 volts and drop to slightly below 4 amperes toward the end of the charge.

At the end of the charge, the operating mode is switched to "float" voltage of "trickle charge" and the voltage will slowly drop to 33.8 volts. Under trickle-charge conditions, the current will usually be less than 0.1 ampere (slight vibration of the ammeter pointer). High trickle-charge current indicates a defective or worn out battery. High ambient temperatures can also cause high trickle charge.

SECTION 5

SERVICE AND MAINTENANCE

5.1 WARRANTY.

We warrant that each new instrument sold by us is free from defects in material and workmanship, and that, properly used, it will perform in full accordance with applicable specifications for a period of two years after original shipment. Any instrument or component that is found within the two-year period not to meet these standards after examination by our factory, district office, or authorized repair agency personnel, will be repaired, or, at our option, replaced without charge, except for tubes or batteries that have given normal service.

5.2 SERVICE.

The two-year warranty stated above attests the quality of materials and workmanship in our products. When difficulties do occur, our service engineers will assist in any way possible. If the difficulty cannot be eliminated by use of the following service instruction, please write or phone our Service Department (see rear cover), giving full information of the trouble and of steps taken to remedy it. Be sure to mention the serial and type numbers of the instrument.

Before returning an instrument to General Radio for service, please write to our Service Department or nearest district office, requesting a Returned Material Tag. Use of this tag will ensure proper handling and identification. For instruments not covered by the warranty, a purchase order should be forwarded to avoid unnecessary delay.
5.3 VOLTAGE AND RESISTANCE MEASUREMENTS.

The following tables list test voltages at transistor pins as an aid in trouble-shooting. DC voltages for Q501, Q502, and Q503 are referred to the positive battery lead. They were measured with a 115-volt, 60-cycle input and a 4.2-ampere constant-current charge. Voltages for Q550 are referred to the negative battery lead. They were measured with the ac line disconnected, and R550 set so that the relay pulls in above a battery voltage of 34 volts.

TABLES OF VOLTAGE MEASUREMENT

<table>
<thead>
<tr>
<th>TRANSISTOR (TYPE)</th>
<th>PIN</th>
<th>DC VOLTS</th>
<th>TRANSISTOR (TYPE)</th>
<th>PIN</th>
<th>BATTERY VOLTAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q501 (TR37)</td>
<td>E</td>
<td>-0.63</td>
<td>Q550 (TR33)</td>
<td>E</td>
<td>+9.6 +12.1 +12.4</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>0</td>
<td></td>
<td>B</td>
<td>+9.6 +12.8 +13.2</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>+2.9</td>
<td></td>
<td>C</td>
<td>+25.0 +31.0 +12.7</td>
</tr>
<tr>
<td>Q502 (TR37)</td>
<td>E</td>
<td>-0.63</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>+4.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q503 (TR26)</td>
<td>E</td>
<td>+8.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B1</td>
<td>+0.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B2</td>
<td>+18.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>REF NO.</td>
<td>DESCRIPTION</td>
<td>PART NO.</td>
<td>REF NO.</td>
<td>DESCRIPTION</td>
<td>PART NO.</td>
</tr>
<tr>
<td>--------</td>
<td>------------------------------</td>
<td>----------</td>
<td>--------</td>
<td>------------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>R501</td>
<td>RESISTOR, Power 3.3kΩ ± 5% 5w</td>
<td>6660-2335</td>
<td>CR502</td>
<td>DIODE, Type 1N3253</td>
<td>6081-1001</td>
</tr>
<tr>
<td>R502</td>
<td>RESISTOR, Composition 24Ω ± 5% 1/2w</td>
<td>6100-0245</td>
<td>CR503</td>
<td>DIODE, Type 1N3253</td>
<td>6081-1001</td>
</tr>
<tr>
<td>R503</td>
<td>RESISTOR, Composition 24Ω ± 5% 1/2w</td>
<td>6100-0245</td>
<td>CR504</td>
<td>DIODE, Type 1N3253</td>
<td>6081-1001</td>
</tr>
<tr>
<td>R504</td>
<td>RESISTOR, Composition 390Ω ± 5% 1/2w</td>
<td>6100-1395</td>
<td>CR505</td>
<td>DIODE, Type 1.5M20Z10</td>
<td>6083-1024</td>
</tr>
<tr>
<td>R505</td>
<td>RESISTOR, Composition 47Ω ± 5% 1/2w</td>
<td>6100-0475</td>
<td>CR506</td>
<td>DIODE, Type 1N645</td>
<td>6082-1016</td>
</tr>
<tr>
<td>R506</td>
<td>RESISTOR, Composition 2.7kΩ ± 5% 1/2w</td>
<td>6100-2275</td>
<td>CR507</td>
<td>DIODE, Type 1N968B</td>
<td>6083-1018</td>
</tr>
<tr>
<td>R507</td>
<td>RESISTOR, Composition 2kΩ ± 5% 1/2w</td>
<td>6100-2205</td>
<td>CR508</td>
<td>DIODE, Type 1N645</td>
<td>6082-1016</td>
</tr>
<tr>
<td>R508</td>
<td>RESISTOR, Composition 2.2kΩ ± 5% 1/2w</td>
<td>6100-2225</td>
<td>CR509</td>
<td>DIODE, Type 1N118A</td>
<td>6082-1006</td>
</tr>
<tr>
<td>R509</td>
<td>RESISTOR, Composition 3.9kΩ ± 5% 1/2w</td>
<td>6100-2395</td>
<td>CR510</td>
<td>DIODE, Type 1N645</td>
<td>6082-1016</td>
</tr>
<tr>
<td>R510</td>
<td>RESISTOR, Precision 6.2kΩ ± 1% 1/2w</td>
<td>6690-5289</td>
<td>CR511</td>
<td>DIODE, Type 1N645</td>
<td>6082-1016</td>
</tr>
<tr>
<td>R511</td>
<td>RESISTOR, Composition 5.5kΩ ± 5% 1/2w</td>
<td>6100-2565</td>
<td>CR512</td>
<td>DIODE, Type 1N3661</td>
<td>6081-1007</td>
</tr>
<tr>
<td>R512</td>
<td>POTENTIOMETER, Wire-Wound 5kΩ ±10%</td>
<td>6057-2509</td>
<td>CR513</td>
<td>DIODE, Type 1N3661</td>
<td>6081-1007</td>
</tr>
<tr>
<td>R513</td>
<td>RESISTOR, Precision 3kΩ ± 1% 1/2w</td>
<td>6690-6257</td>
<td>CR514</td>
<td>DIODE, Type 1N3661</td>
<td>6081-1007</td>
</tr>
<tr>
<td>R514</td>
<td>RESISTOR, Composition ± 5% 1/2w</td>
<td>1268-0410</td>
<td>F501</td>
<td>FUSE, 11sv, 3.2a</td>
<td>5330-2300</td>
</tr>
<tr>
<td>R515</td>
<td>RESISTOR, Film 150kΩ ± 1% 1/8w</td>
<td>6190-9600</td>
<td>F502</td>
<td>FUSE, 11sv, 3.2a</td>
<td>5330-1700</td>
</tr>
<tr>
<td>R516</td>
<td>POTENTIOMETER, Wire-Wound 5kΩ ±10%</td>
<td>6057-2509</td>
<td>F503</td>
<td>FUSE, 5a</td>
<td>5330-2300</td>
</tr>
<tr>
<td>R517</td>
<td>POTENTIOMETER, Wire-Wound 5Ω ±10%</td>
<td>6050-0400</td>
<td>F504</td>
<td>FUSE, 5a</td>
<td>5330-1700</td>
</tr>
<tr>
<td>R518</td>
<td>POTENTIOMETER, Wire-Wound 1Ω ±10%</td>
<td>6010-8709</td>
<td>F505</td>
<td>FUSE, 5a</td>
<td>5330-2300</td>
</tr>
<tr>
<td>R519</td>
<td>RESISTOR, Power 0.7Ω ±10% 10w</td>
<td>6670-8709</td>
<td>F506</td>
<td>FUSE, 5a</td>
<td>5330-1700</td>
</tr>
<tr>
<td>R520</td>
<td>RESISTOR, Power 0.7Ω ±10% 10w</td>
<td>6660-8709</td>
<td>F507</td>
<td>FUSE, 5a</td>
<td>5330-2300</td>
</tr>
<tr>
<td>R521</td>
<td>RESISTOR, Composition 10kΩ ± 5% 1/2w</td>
<td>6100-3105</td>
<td>F508</td>
<td>FUSE, 5a</td>
<td>5330-1700</td>
</tr>
<tr>
<td>R522</td>
<td>RESISTOR, Composition 15Ω ± 5% 1/2w</td>
<td>6100-0155</td>
<td>F509</td>
<td>FUSE, 5a</td>
<td>5330-2300</td>
</tr>
<tr>
<td>C501</td>
<td>CAPACITOR, Electrolytic 50µf ±100% 100v</td>
<td>4860-8250</td>
<td>F510</td>
<td>FUSE, 5a</td>
<td>5330-1700</td>
</tr>
<tr>
<td>C502</td>
<td>CAPACITOR, Plastic 1µf ±10% 200v</td>
<td>4450-2450</td>
<td>F511</td>
<td>FUSE, 5a</td>
<td>5330-2300</td>
</tr>
<tr>
<td>C503A</td>
<td>CAPACITOR, Electrolytic 100µf ±10% 200v</td>
<td>4450-2450</td>
<td>F512</td>
<td>FUSE, 5a</td>
<td>5330-1700</td>
</tr>
<tr>
<td>C503B</td>
<td>CAPACITOR, Electrolytic 1000µf ±10% 100v</td>
<td>4450-2450</td>
<td>F513</td>
<td>FUSE, 5a</td>
<td>5330-2300</td>
</tr>
<tr>
<td>CS04</td>
<td>CAPACITOR, Electrolytic 100µf ±10% 100v</td>
<td>4450-2450</td>
<td>F514</td>
<td>FUSE, 5a</td>
<td>5330-1700</td>
</tr>
<tr>
<td>CS05</td>
<td>CAPACITOR, Ceramic 0.0033µf ±20% 5000 vcw</td>
<td>4406-2339</td>
<td>F515</td>
<td>FUSE, 5a</td>
<td>5330-2300</td>
</tr>
<tr>
<td>CS06</td>
<td>CAPACITOR, Ceramic 0.0033µf ±20% 5000 vcw</td>
<td>4406-2339</td>
<td>F516</td>
<td>FUSE, 5a</td>
<td>5330-1700</td>
</tr>
<tr>
<td>CR501</td>
<td>DIODE, Type 1N3253</td>
<td>6081-1001</td>
<td>F517</td>
<td>FUSE, 5a</td>
<td>5330-2300</td>
</tr>
</tbody>
</table>

NOTE: When ordering replacement parts, please specify the instrument type number as well as the part numbers of the items required.

Figure 9. Etched-board layout for the Type 1268-A.
Figure 8. Schematic diagram of the Type 1268-A Automatic Battery Charger.
Figure 13 Terminal connections for the Type 1268-9602 Battery.
Figure 12. Installation of the Type 1268-P1 Battery Drawer.

Legend

A - side brackets (2) H - screws, 6-32, 5/8-inch (8)
B - screws, 10-32, ½-inch (8) J - lockwashers, No. 6 (8)
C - spacers, 3/16-inch (4) K - nuts, 6-32 (8)
D - spacers, 1/16-inch (2) L - drawer (1)
E - lockwashers, No. 10 (8) M - screws, 6-32, 5/16-inch (16)
F - nuts, 10-32 (8) N - lockwashers, No. 6 (16)
G - drawer slides (2) O - nuts, 6-32 (16)
Figure 10. Interior View of Type 1268-A Automatic Battery Charger.

Figure 11. Location of relay-rack holes for installation of the Type 1268-P1 Battery Drawer.
GENERAL RADIO COMPANY
WEST CONCORD, MASSACHUSETTS*
Emerson 9-4400
Mission 6-7400

SALES ENGINEERING OFFICES

METROPOLITAN
NEW YORK*
Broad Avenue at Linden
Ridgefield, New Jersey
Telephone N.Y. WOrth 4-2722
N.J. WHItney 3-3140

SYRACUSE
Pickard Building
East Molloy Road
Syracuse 11, New York
Telephone GLeovery 4-9323

PHILADELPHIA
1150 York Road
Abington, Pennsylvania
Telephone TUrner 7-8486
Phila., HAncock 4-7419

WASHINGTON*
and BALTIMORE
Rockville Pike at Wall Lane
Rockville, Maryland
Telephone 946-1600

ORLANDO
113 East Colonial Drive
Orlando, Florida
Telephone GArden 5-4671

CHICAGO*
6605 West North Avenue
Oak Park, Illinois
Telephone Village 8-9400

CLEVELAND
5579 Pearl Road
Cleveland 29, Ohio
Telephone 886-0150

LOS ANGELES*
1000 North Seward Street
Los Angeles 38, California
Telephone HOllywood 9-6201

SAN FRANCISCO
1186 Los Altos Avenue
Los Altos, California
Telephone WHitecliff 8-8233

DALLAS
2501-A West Mockingbird Lane
Dallas 35, Texas
Telephone Fleetwood 7-4031

TORONTO*
99 Floral Parkway
Toronto 15, Ontario, Canada
Telephone CHerry 7-2171

MONTREAL BRANCH
Office 395 1255 Laird Boulevard
Town of Mount Royal, Quebec, Canada
Telephone 737-3673

* Repair services are available at these offices.

General Radio Company (Overseas), Zurich, Switzerland
Representatives in Principal Overseas Countries

Printed in USA